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Abstract 

We propose an innovative method for spatial interpolation called TSCS (abbr. of Time 
Series Cointegrated System), which is based on cointegration theory and multiple linear 
regression. It considers long-term equilibrium relationship and requires making use of 
historical spatio-temporal data, though it  is a purely spatial interpolation method. TSCS bears 
two main advantages. Firstly, it generally performs well when making interpolation and 
possesses high robustness. Furthermore, it is relatively simple and easy to implement without 
model selection, parameter adjustment or requirement of subjective judgement, giving it a 
chance to be regarded as a desirable alternative to existing spatio-temporal interpolation 
methods in some cases where we merely intend to interpolate a series of cross-section data at 
each observed time point for a given spatial domain. 

The theory framework of TSCS is presented first. Then, through simulation study, we 
show its high accuracy of interpolation along with good robustness. Furthermore, some 
properties of TSCS referring to its performance are studied via repeated experiments. Next, 
TSCS is compared with spatio-temporal kriging in a real-world application, based on the 
GHCND data set, concerning spatio-temporal interpolation , which illustrates the prominent 
strengths of TSCS in some specific cases. 

Additionally, an R package named TSCS is built for carrying out TSCS spatial interpolation 
method. R code of each function is presented in simulation study to demonstrate the workflow 
of TSCS using this package. 
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1 Introduction 
The collection and processing of spatio-temporal data is rapidly increasing due to 

technological advances and the societal need for analysis of variables that vary in space and 
time, such as weather and air quality variables. Nowadays, modern sensors allow to monitor 
different variables at an increasing temporal resolution producing rich spatio-temporal data 
sets. With ubiquitous spatio-temporal data, relevant problems about how to comprehend and 
make full use of them have also penetrated into various fields. Purely spatial interpolation 
(Hua Xu 2012), like kriging (Stein, M. L 1999), if resorting to spatio-temporal data can 
potentially provide more accurate predictions than without considering them because 
observations taken at other times can be included for analysis. 

Bigger data set leads to more time-consuming algorithm and, meanwhile, taking time into 
account makes model much more complex. It is fairly difficult to find the best or the most 
convenient model when dealing with spatio-temporal data. Accordingly, with the recent 
development of geostatistics, meteorology and econometrics, many methods have been 
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proposed to handle spatio-temporal data, struggling for spatio-temporal interpolation, such 
as spatio-temporal kriging (Benedikt Graler et al. 2016), STARMA (Felix Cheysson 2016), 
random field (Martin Schlather et al. 2015) and Gaussian spatio-temporal process (Johan 
Lindstrom et al. 2013). They are widely accepted and all perform well on a large class of 
problems respectively. However, after applying the above methods to real data, we discern two 
main problems. One is that these methods are very complicated based on various intricate 
models and substantial parameters. They more or less require subjective judgements from 
human and a cumbersome process of model selection. The other problem is that these 
methods fail to efficaciously deal with a class of spatio-temporal interpolation problem, where 
the historical spatio-temporal data is relatively full while the new spatio-temporal data, with 
numerous missing observations that we want to interpolate at each observed time point, is a 
series of cross-section data which is sparse in time dimension (see Fig 1). Since the new spatio-
temporal data to be interpolated is sparse in time dimension, it is hard to establish a model of 
good fit analyzing historical data and new data simultaneously. Hence, the performance of 
interpolation would not be good enough. Moreover, if the time interval between historical data 
and new data is large, the performance will only get worse. 

 
Fig 1. Problem clarification. 

As a consequence, we propose a new method called TSCS (abbr. of Time Series 
Cointegrated System) to cope with the problems discussed above. This method possesses two 
advantages. On the one hand, it generally performs well when making interpolation and 
possesses high robustness. On the other hand, it is simple and easy to employ without the need 
of model selection, parameter adjustment and subjective judgement. 

Theoretically, TSCS derives from cointegration theory and multiple linear regression. In 
the process of coming up with this method, we shift our perspective towards cointegration 
and spatio-temporal data simultaneously in an outside-the-box manner, a far cry from existing 
spatial interpolation methods and spatio-temporal modelling theory. The main consideration 
of TSCS is the long-term equilibrium relationship between spatial locations, instead of 
involving spatio-temporal covariance function or covariate in most spatio-temporal modelling 
methods (Johan Lindstrom et al. 2013; Martin Schlather et al. 2015), variogram and anisotropy 
in spatio-temporal kriging (Benedikt Graler et al. 2016), etc. 

The rest of this paper is organized as follows. In Section 2, we describe the core idea of 
TSCS method first. Then, we make clear the definitions of key concepts. Next, the detailed 
process of TSCS and its theory are demonstrated. In Section 3, based on specially simulated 
data, we show the result of simulation study from 2D and 3D rectangular grid system 
separately. Meanwhile, the workflow of spatial interpolation using R package TSCS is 
presented. In Section 4, we compare TSCS with spatio-temporal kriging, one of the state-of-
the-art spatio-temporal interpolation methods, in a real-world application concerning the 
GHCND data set, to illustrate the strengths of TSCS. The paper is concluded by some remarks 
in Section 5, where the drawbacks of TSCS and some unsettled problems are tersely stated. 
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2 Method 

2.1 Overview of TSCS 

In the context of geostatistics (Donald E. Myers), a natural spatio-temporal data set can 
be an observation set yielded from space geodetic system, meteorological observing system 
or just a simple farmland monitor net. Under the circumstance we mentioned before, suppose 
the spatio-temporal data set to be interpolated is composed of a series of cross-section data 
which is sparse in time dimension, with numerous missing observations that we intend to 
predict at each observed time point. Meanwhile, we have enough historical spatio-temporal 
data in hand. (see Fig 1) 

TSCS is based on cointegration theory and multiple linear regression, the core idea of 
which is as follows. In the spatial domain of the data set mentioned above, we consider that 
every spatial location includes an individual time series. Theoretically, we first assume that, 
for any spatial location within spatial domain, its time series and the time series of its adjacent 
spatial locations are cointegrated (cointegrated system). Then, based on historical spatio-
temporal data, for each spatial location along with its adjacent locations, we calculate the 
regression coefficients through multiple linear regression. Finally, with the use of the 
regressive relationship obtained, through establishing system of linear equations and solving 
it, missing observations are estimated. Our reasoning is that the regression function obtained 
on the strength of historical spatio-temporal data is able to explicate the long-term 
equilibrium relationships between spatial locations, which means the correlations still hold 
in the future if the system property is relatively stable. Thus, we can utilize the regression 
coefficients for missing value prediction. 

Strictly speaking, TSCS is not a general spatio-temporal interpolation method for two 
reasons. First, as we have emphasized before, the actual work of TSCS is making interpolation 
in a new data set (posterior) on the basis of analyzing historical spatio-temporal data (anterior) 
in hand (see Fig 1), rather than purely interpolating within a single data set. Second, in the 
process of estimating missing observations, TSCS handles each cross-section data separately, 
which is unable to give prediction in a time point whose cross-section data is entirely absent. 
Hence, it should be regarded as a purely spatial interpolation method but includes the 
consideration of time series and cointegrated relationship. 

 
2.2 Definitions of Key Concepts 

The following key concepts will be used repeatedly in this paper. Definition 3  are created 
in the context of TSCS exclusively, for the convenience of further statement. The others are 
existing in academia. 

Definition 1. Stationary (weak stationary) time seri es. A stationary time series tx  is 

a finite variance process such that: 
(i) the mean value function t�P  is constant and does not depend on time t . 

(i i) the autocovariance function ( , )s t�J  depends on time s  and t  only through their 

difference s t�� . 

Definition 2. Cointegrated relationship.  Cointegration is a statistical property of a 
collection 1 2( , ,..., )t t ktx x x  of time series variables. First, all of the series must be integrated 

of order one. Next, if there exists a linear combination of this collection integrated of order 
zero, then the collection is said to be cointegrated. Cointegration means long-term equilibrium 
relationship. 
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Definition 3. Cointegrated system.  In the context of TSCS, cointegrated system is a class 
of spatio-temporal data. Firstly, in the spatial domain of the data, we consider that every 
spatial location includes an individual time series (missing values are allowed). If the data 
satisfies that, for any spatial location, its time series and the time series of its adjacent spatial 
locations are cointegrated, it is said to be a cointegrated system. 

Definition 4. Cross-section data. Cross-section data is a type of data collected by 
observing many subjects (for example, spatial locations in the context of geostatistics) at the 
same point of time, without regard to differences in time. (see Fig 2) 

 
Fig 2. Definition illustration. 

 
2.3 Detailed Statement of TSCS 

    In the following 2.3.1 ~ 2.3.4, we clearly elaborate the four essential steps of TSCS 
procedure in order, but we decide to take 2D rectangular grid system for example only. This is 
because the theory and procedure stays identical no matter for 2D or 3D rectangular grid 
system and the only difference is the selection of adjacent spatial locations along with 
algorithmic details. ���‡���†�‘�•�ï�–���•�‡�‡�†���–�‘���•�ƒ�•�‡���”�‡�†�—�•�†�ƒ�•�–���’�ƒ�‰�‡�•�ä 

Suppose, in a given 2D rectangular grid system, we have the following spatio-temporal 
data. 

(i) Spatial domain S  along with coordinates of spatial locations: ( , )i iX Y , 1,2,...,i n�  

(ii) Spatio-temporal data in temporal domain T : �`�^ 1 1 2 2( , ), ( , ),..., ( , )m mz s t z s t z s t� Z , 

where 2
1 1 2 2( , ),( , ),..., ( , )m ms t s t s t �• �u �Ž �uS T  

(iii) Spatio-temporal data in temporal domain *T : �`�^* * * *
1 1 2 2( , ), ( , ),..., ( , )p pz s t z s t z s t� Z , 

where * * * * 2
1 1 2 2( , ),( , ),...,( , )m ms t s t s t �• �u �Ž �uS T  

In addition, T  is anterior to *T  in time axis. Consequently, Z  is called historical 

spatio-temporal data while *Z  is the new spatio-temporal data we are interested in, with 
missing observations to be interpolated. 

 
2.3.1 Cointegration Test 

The basic assumption of TSCS method is that both Z  and *Z  enjoying the same 
spatial domain S  can be regarded as a cointegrated system. Hence, cointegration test is 
necessary before TSCS is put into use. 
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Spurious relationship (Anindya Banerjee et al. 1993) is a common problem in statistics. 
As is known to all, whether a valid regression model can be established between a collection 
of time series depends on if cointegrated relationship exists between them. Provided that 
these time series are not cointegrated, the residual of fitting is a nonstationary time series 
leading to spurious relationship. In this case, the regression function obtained cannot truly 
explain the long-term equilibrium relationship between these variables even if it is a good fit 
statistically. Therefore, cointegration test must be done before building regression model 
between multiple time series (Shiying Zhang et al. 2014). 

The prerequisite of cointegration test is that all of the time series considered must be 
integrated of one, namely, first-order difference stationary. As a result, after setting 
significance level, we first test first-order difference stationarity of time series for every spatial 
location in spatial domain. Next, within the whole spatial domain, only if for any spatial 
location, its time series bears a cointegrated relationship with the time series of its adjacent 
spatial locations, proved by cointegration test, can it make sense to use the regression 
functions obtained for estimation later. 

Detailed procedure about cointegration test is demonstrated in the next part 2.3.2 in that 
regression analysis is in correspondence with estimating cointegration coefficients by means 
of OLS (Orthogonal Least Square) method (Shiying Zhang et al. 2014). 

 
2.3.2 Obtaining Regression Coefficients Matrix 

To begin with, we assert that TSCS is only capable of interpolation but not extrapolation. 
TSCS is unable to estimate missing observation located in the boundary or beyond the range 
of a given spatial domain. 

Since there is no distinction between obtaining regression coefficients and calculating 
cointegration coefficients through OLS method, after distinguishing interior spatial locations 
from spatial domain boundary, we establish the following regression model (Michael H. 
Kutner et al. 1988) for every interior spatial location is �• S  along with its J  adjacent 

spatial locations (1) (2) ( ), ,...,i i i Js s s �• S . 

0 ( )
1

( , ) ( , )
J

i j i j t
j

z s t z s t�E �E �H
� 

� �� ���¦  

    In this model, t�H  denotes random error term that satisfies ( ) 0tE �H �  and 
2var( )t� H � V� �� �f , u�H  and v�H  are uncorrelated  (u )v�z . Since we are taking a 2D 

rectangular grid system as an exemplificative case, the selection of adjacent spatial locations 
can be decided as what Fig 3 shows. Thus, here 8J � . 

 
Fig 3. Selection of adjacent spatial locations for 2D rectangular grid system. 

Based on sample (1) (2) (8)( , ), ( , ), ( , ),..., ( , )i i i iz s t z s t z s t z s t , t �• T  from historical 

spatio-temporal data Z , we obtain the following fitting function. 
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8

0 ( )
1

�Ö �Ö( , ) ( , )i j i j t
j

z s t z s t e� E � E
� 

� �� ���¦  

According to cointegration theory, the behavior of residual te  determines whether 

spurious correlation occurs. For a given significance level generally set to 0.05, through unit 
root test (Alok Bhargava 1986), if we conclude that te  is stationary, we can say the collection 

of time series (1) (2) (8)( , ), ( , ), ( , ),..., ( , )i i i iz s t z s t z s t z s t , t �• T  is cointegrated. Under 

cointegrated system (see Definition 3 ), the basic assumption of TSCS method, using historical 

spatio-temporal data Z , we obtain the regression coefficient vector 0 1 8
�Ö �Ö �Ö( , ,..., )�E �E �E� �%  for 

every interior spatial location, stored into a matrix �4 . The regression coefficient matrix �4  

is used for missing value estimation in spatio-temporal data *Z . 
 

2.3.3 Searching for Subdomain with Missing Observation 

In the process of estimating missing observation in spatio-temporal data *Z , TSCS 
works on each cross-section data separately and it only deals with the subdomain with 
missing observation, without involving other parts of the spatial domain. Hence, we need to 

search out these subdomains with missing observation inside each cross-section data in *Z . 

For the sake of simplicity, we might as well focus on one cross-section data * * *( )ht �ŽZ Z  

at time of * *
ht �• T  as an example (see Fig 4), where the missing observations are denoted by 

following notations. 

* * * * *
1 (1) 2 (2) 9 (9)( , ), ( , ),..., ( , ) ( )h h h h h h hy z s t y z s t y z s t t� � � �• Z  

(1) (2) (9), ,...,h h hs s s �• S  and * *
ht �• T  

 
Fig 4. Three subdomains with missing observation in one cross-section data. 

Each lattice denotes a spatial location. Blue lattice refers to spatial domain boundary. 
Red lattice refers to subdomain boundary. Yellow lattice designates missing observation. 

According to the spatial distribution of 1 2 9, ,...,y y y , we discover three subdomains 

with missing observation in total, denoted by 1 (1) (2) (3)={ , , }h h hs s sS , 2 (4)={ }hsS  and 
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3 (5) (6) (7) (8) (9)={ , , , , }h h h h hs s s s sS , where 1 2 3, , �ŽS S S S. Here it is quite necessary to 

emphasize that the missing observation can be spatially isolated or contiguous in group within 
subdomain. 

 
2.3.4 Solving System of Linear Equations 

Now we proceed to the last stage because all subdomains with missing observation have 
been searched out. With the use of regression coefficient matrix �4  obtained from historical 

spatio-temporal data Z , in combination with the cross-section data at time of *
ht , we 

establish the following system of linear equations for each subdomain 1 2 3, ,S S S , where 

1 2 9, ,...,y y y  are considered as variables. The meanings of 1 14~a a , 1 8~b b  and 1 14~c c  

are demonstrated in Fig 4. 

1 01 11 1 21 2 31 3 41 4 51 2 61 12 71 13 81 14

1 2 02 12 1 22 3 32 4 42 3 52 10 62 11 72 12 82 13

3 03 13 4 23 5 33 6 43 7 53 8 63 9 73 10 83

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö:  

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

y a a a a y a a a

y y a a y a a a a

y a a a a a a a y

�E �E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E �E

� �� �� �� �� �� �� �� ��

�) � �� �� �� �� �� �� �� ��

� �� �� �� �� �� �� �� �� 2

�­
�°�°
�®
�°
�°�¯

2 4 04 14 1 24 2 34 3 44 4 54 5 64 6 74 7 84 8
�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö:   y b b b b b b b b�E �E �E �E �E �E �E �E �E�) � �� �� �� �� �� �� �� ��  

5 05 15 1 25 2 35 6 45 9 55 8 65 7 75 13 85 14

6 06 16 2 26 3 36 4 46 5 56 9 66 8 76 5 86 1

3 7 07 17 13 27 5 37 8 47 8 57 9 67 10 77 11 87 12

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö:  

y c c y y y y c c

y c c c c y y y c

y c y y c c c c c

y

�E �E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E �E

� �� �� �� �� �� �� �� ��

� �� �� �� �� �� �� �� ��

�) � �� �� �� �� �� �� �� ��

8 08 18 5 28 6 38 9 48 7 58 8 68 9 78 7 88 13

9 09 19 6 29 4 39 5 49 6 59 7 69 8 79 8 89 5

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

y y y c c c y c

y y c c c c c y y

�E �E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E �E

�­
�°
�°
�°
�®
�°

� �� �� �� �� �� �� �� ���°
�° � �� �� �� �� �� �� �� ���¯

 

Next, we combine the three systems of linear equations into one joint system of linear 
equations. By transposition, its characteristics are more explicit. 

01 11 1 21 2 31 3 41 4 61 12 71 13 81 14 1

02 22 3 32 4 52 10 62 11 72 12 82 13 2

03 13 4 23 5 33 6 43 7 53 8 63 9 73 10 3

04 14 1 24 2 34 3

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö

Let 

a a a a a a a I

a a a a a a I

a a a a a a a I

b b b

�E �E �E �E �E �E �E �E

�E �E �E �E �E �E �E

�E �E �E �E �E �E �E �E

�E �E �E �E

�� �� �� �� �� �� �� � 

�� �� �� �� �� �� � 

�� �� �� �� �� �� �� � 

�� �� �� �� 44 4 54 5 64 6 74 7 84 8 4

05 15 1 25 2 75 13 85 14 5

06 16 2 26 3 36 4 46 5 86 1 6

07 17 13 47 8 57 9 67 10 77 11 87 12 7

08 48 7 58 8 68 9 88 1

�Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö �Ö �Ö

�Ö �Ö �Ö �Ö �Ö

b b b b b I

c c c c I

c c c c c I

c c c c c c I

c c c c

�E �E �E �E �E

�E �E �E �E �E

�E �E �E �E �E �E

�E �E �E �E �E �E �E

�E �E �E �E �E

�� �� �� �� � 

�� �� �� �� � 

�� �� �� �� �� � 

�� �� �� �� �� �� � 

�� �� �� �� 3 8

09 29 4 39 5 49 6 59 7 69 8 9
�Ö �Ö �Ö �Ö �Ö �Ö

I

c c c c c I�E �E �E �E �E �E

�­
�°
�°
�°
�°
�°
�°
�°
�®
�°
�°
�°
�°
�° � 
�°
�° �� �� �� �� �� � �¯
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1 51 2 1

12 1 2 42 3

1

2

3

�Ö                                                                                       

�Ö �Ö     +                                                            

Then  = 

y y I

y y y

�E

� E � E

� � �  

� � � �

�)�­
�°�)�®
�°�)�¯

2

83 2 3 3

4

         

�Ö                +                                                                    

                                                                                         

I

y y I

y

�E

� 

� � �  

4

5 35 6 65 7 55 8 45 9 5

76 5 6 66 8 56 9 6

          

�Ö �Ö �Ö �Ö                                                   

�Ö �Ö �Ö                                               +             

                

I

y y y y y I

y y y y I

�E �E �E �E

�E �E �E

� 

�� �� �� �� � 

�� �� �� � 

27 5 7 37 8 7

18 5 28 6 78 7 8 38 9 8

�Ö �Ö                                           +             

�Ö �Ö �Ö �Ö                                              

�Ö                                          

y y y I

y y y y y I

� E � E

�E �E �E �E

�� �� � 

�� �� �� �� �� � 

�� 89 5 19 6 79 8 9 9
�Ö �Ö                y y y y I�E �E �E

�­
�°
�°
�°
�°
�°
�°
�°
�®
�°
�°
�°
�°
�°
�°
�° �� �� �� � �¯

 

The solution of the above joint system of linear equations is the estimation of missing 

observations 1 2 9, ,...,y y y . Similarly, for every cross-section data in *Z  to be interpolated, 

we estimate its missing observations in the way demonstrated above. Up to now, TSCS 
interpolation is completed. We can see that TSCS is a spatial interpolation method in nature, 
but it is able to solve part of spatio-temporal interpolation problem. 

On balance, under cointegrated system Z  and *Z , we obtain regression coefficient 

matrix �4  based on Z  first . Suppose the cross-section data * *( )htZ  at time of *
ht  has 

missing observations 1 2, ,..., Ky y y . Then, we search out subdomains with missing 

observation 1 2, ,..., K�cS S S , K K�c�d . Next, using �4  and * *( )htZ , we construct system of 

linear equations 1 2, ,..., K�c�) �) �)  with regard to subdomains 1 2, ,..., K�cS S S . Finally, by 

solving the joint system of linear equations �^ �`1 2, ,..., K�c�) �) �) , we obtain the estimation of 

missing observations 1 2, ,..., Ky y y . In this way, we give prediction to missing observation in 

every cross-section data of *Z . Hereto, interpolation by means of TSCS is totally completed. 

 

3 Simulation Study 

The three main objectives of simulation study are as follows. 
First, in 3.2, to demonstrate the workflow of spatial interpolation using TSCS, an R 

package tailored for TSCS method. Here we emphasize that TSCS of current version 0.1.1 is 
only capable of handling spatio-temporal data based on 2D and 3D rectangular grid system, 
two typical cases common in real life. This package can be downloaded from CRAN repository 
at URL http://CRAN.R-project.org/package=TSCS. Additionally, other R packages that deals 
with spatio-temporal models and data are summarized in the relevant task view 
(http://cran.r-project.org/web/views/SpatioTemporal.h tml) on the Comprehensive R 
Archive Network (CRAN) http://CRAN.R-project.org. 

Second, in 3.2, to show the predictive performance of TSCS. Specifically speaking, it 
refers to ���������ï�• high accuracy and good robustness when it making spatial interpolation. 

Third, in 3.3, to study some properties of TSCS referring to its predictive performance. 
This part of research aims at figuring out what factors affect the accuracy and robustness of 
TSCS interpolation, in order to offer us some rules of thumb on how to make a more effective 
prediction using TSCS according to different situations. 

 

http://cran.r-project.org/package=TSCS
http://cran.r-project.org/web/views/SpatioTemporal.html
http://cran.r-project.org/
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3.1 Data Generation 

We decide to generate simulation data from 2D and 3D rectangular grid system 
separately. Each simulated data includes two parts �� a complete historical spatio-temporal 
data (without missing value) and a new spatio-temporal data with missing observations to be 
interpolated. This data set is designed and generated resembling the observation set collected 
by sensors in the field of geostatistics. 

 
3.1.1 2D Rectangular Grid System 

First of all, we create a 2D rectangular grid system S regarded as the spatial domain of 
spatio-temporal data to be generated. Through combination of 1,2,...,50x �  and 

1,2,...,50y � , we build a 2D rectangular grid system of 2500 spatial locations 

�^ �`1 2 2500, ,...,S s s s� , where ( , )i i is x y� , �^ �`1,2,...,2500i �•  and �^ �`, 1,2,...,50i ix y �• . 

Next, we generate the overall spatio-temporal data through multiple time series of 

temporal domain �^ �`1,2,...,650T �  in all spatial locations 1 2 2500, ,...,s s s . The observed 

values of spatial locations are denoted by 1 2 2500( , ), ( , ),..., ( , )z s t z s t z s t , t T�• . Before 

building time series model, we generate the initial value of time series for every spatial 
location with the following function. 
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1,2,...,2500i �  and �^ �`, 1,2,...,50i ix y �•  

Since we have obtained the initial value of time series for every spatial location, after 
careful consideration, we build the following time series model (Robert H. Shumway et al. 
2015) to generate the overall spatio-temporal data. 

( , ) sin( )i i i it iz s t a t b t w C�Z� �˜ �� �˜ �� �� , 1,2,...,2500i �  and 1,2,...,650t �  

In this expression, iC  denotes initial value when 0t t�  and sin( )i i ita t b t w�Z�˜ �� �˜ ��  

refers to function of time t  in which ib t�˜  is linear trend term, sin( )ia t�Z�˜  is periodic 

term and itw  is white noise satisfying ~ (0, )
iid

itw �T�1 . Furthermore, values of these 

parameters are as follows. ia  is a random number from uniform distribution �> �@1,2U , ib  

is a random number from uniform distribution �> �@0,1 65U , 1 3�Z �  and 0.09�T� . 

Here we split the overall spatio-temporal data into two parts. One is the historical spatio-
temporal data 1 2 2500( , ), ( , ),..., ( , )z s t z s t z s t, 1,2,...,500t � . The other is the new spatio-

temporal data 1 2 2500( , ), ( , ),..., ( , )z s t z s t z s t, 501,502,...,650t � . Within this new spatio-

temporal data, we select its cross-section data of 7 different time points at regular intervals �� 
t=501, t=525, t=550, t=575, t=600, t=625 and t=650. Meanwhile, 300, 500, 1000, 800, 400, 
700 and 600 observations are randomly deleted respectively (2500 observations in total for 
each cross-section data). Finally, we write the historical spatio-temporal data and the 
coordinates of its spatial domain into CSV files data1_2D.csv. We also write the 7 cross-section 
data and the same coordinates into CSV files newdata_2D.csv. 
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3.1.2 3D Rectangular Grid System 

In a similar way, we first create a 3D rectangular grid system S regarded as the spatial 
domain of spatio-temporal data to be generated. Through combination of 1,2,...,20x � , 

1,2,...,20y �  and 1,2,...,20h � , we build a 3D rectangular grid system of 8000 spatial 

locations �^ �`1 2 8000, ,...,S s s s� , where ( , , )i i i is x y h� , �^ �`1,2,...,8000i �•  and 

�^ �`, , 1,2,...,20i i ix y h �• . 

Next, we generate the overall spatio-temporal data through multiple time series of 

temporal domain �^ �`1,2,...,400T �  in all spatial locations 1 2 8000, ,...,s s s . The observed 

values of spatial locations are denoted by 1 2 8000( , ), ( , ),..., ( , )z s t z s t z s t , t T�• . Before 

building time series model, we generate the initial value of time series for every spatial 
location with the following function. 

2 2 2
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( , , , ) : sin( )

( )

i i i i i i i

i i i i i
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i

r f x y h x y h
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1,2,...,8000i �  and �^ �`, , 1,2,...,20i i ix y h �•  

Since we have obtained the initial value of time series for every spatial location, after 
careful consideration, we build the following time series model (Robert H. Shumway et al. 
2015) to generate the overall spatio-temporal data. 

( , ) sin( )i i i it iz s t a t b t w C�Z� �˜ �� �˜ �� �� , 1,2,...,8000i �  and 1,2,...,400t �  

In this expression, iC  denotes initial value when 0t t�  and sin( )i i ita t b t w�Z�˜ �� �˜ ��  

refers to function of time t  in which ib t�˜  is linear trend term, sin( )ia t�Z�˜  is periodic 

term and itw  is white noise satisfying ~ (0, )
iid

itw �T�1 . Furthermore, values of these 

parameters are as follows. ia  is a random number from uniform distribution 
3

,3
2

U � ª � º
� « � »� ¬ � ¼

, ib  

is a random number from uniform distribution �> �@0,1 40U , 1 3�Z �  and 20.45�T� . 

Here we split the overall spatio-temporal data into two parts. One is the historical spatio-
temporal data 1 2 8000( , ), ( , ),..., ( , )z s t z s t z s t , 1,2,...,300t � . The other is the new spatio-

temporal data 1 2 8000( , ), ( , ),..., ( , )z s t z s t z s t, 301,302,...,400t � . Within this new spatio-

temporal data, we select its cross-section data of 6 different time points at regular intervals �� 
t=301, t=320, t=340, t=360, t=380 and t=400. Meanwhile, 800, 1300, 2500, 2000, 1000 and 
1800 observations are randomly deleted respectively (8000 observations in total for each 
cross-section data). Finally, we write the historical spatio-temporal data and the coordinates 
of its spatial domain into CSV files data1_3D.csv. We also write the 6 cross-section data and 
the same coordinates into CSV files newdata_3D.csv. 

 
3.1.3 Explanations 

For the avoidance of doubt, in this part, we make clear the reason why we choose the time 
series model in 3.1.1 and 3.1.2 together with parameter settings. Our considerations are as 
follows. 
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For one thing, characteristic of typical time series. A typical time series includes trend 
term, periodic trend (season) and noise. We choose additive model instead of multiplicative 
model because we hope the value of observation would not fluctuate drastically but change 
gradually. Besides, we use a simple function to generate data instead of ARIMA or GARCH 
model because these time series models primarily deal with stationary time series (usually 
difference of time series), but most of time series in the real world are nonstationary. 

For another, the basic assumption �� cointegrated system. Although ia  and ib  are set as 

random numbers within a given bound respectively, causing a small difference in magnitude 
of fluctuation, but the basic structure (sin( ), )t t�Z�˜  of every time series is identical which 

leads to similar variation behavior. By doing that, through augmented Dickey��Fuller (ADF) test 
with significance level 0.01�D� , time series data of every spatial location is integrated of 
order 1. Furthermore, it also works giving the percentage of cointegrated relationships, a 
measurement of the degree our data satisfies the assumption of cointegrated system �� 100%. 

 
3.2 Workflow of TSCS 

In this section, we demonstrate the workflow of spatial interpolation using TSCS package 
for 2D and 3D rectangular grid system respectively. Besides, the performance of TSCS handling 
simulated data is presented and evaluated, referring to its high accuracy and good robustness. 

In the context of using TSCS package, the historical spatio-temporal data should be 
arranged in a standard format for input. As to 2D rectangular grid system, it should be a data 
frame containing these variables in order: X coordinate, Y coordinate and observations as time 
goes on. As to 3D rectangular grid system, it should be a data frame containing these variables 
in order: X coordinate, Y coordinate, Z coordinate and observations as time goes on. For this 
reason, data-preprocessing or data reconstruction is necessary beforehand. 

In this package, the plotting functions for 2D and 3D cases are built upon ggplot2 (Hadley 
Wickham and Winston Chang 2016) package and rgl (Daniel Adler and Duncan Murdoch 2017) 
package respectively. 

 
3.2.1 2D Rectangular Grid System 

Missing observations in new spatio-temporal data newdata_2D are shown in Fig 5. 

 
Fig 5. Missing observations in newdata_2D. 

If you want to view the missing observations more clearly, plot_NA can help you do this. 
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Taking the cross-section data at time of t=501 for example, we visualize the spatial distribution 
of missing observations in Fig 6. 

> plot_NA(newdata_2D[,c(1:2,3)]) 

 
Fig 6. Missing observations in cross-section data at time of t=501. 

plot_map draws two-dimensional spatial map with gradient color for a cross-section 
data. For instance, at time of t=501, the cross-section data are visualized in Fig 7. 

> plot_map(newdata[,c(1:2,3)]) 

 
Fig 7. Spatial map of cross-section data at time of t=501. 

Since we have an overview in mind of spatio-temporal data newdata_2D, we proceed to 
TSCS spatial interpolation. The first step, also the prerequisite, is obtaining regression 



13 
 

coefficient matrix with  tscsRegression based on historical spatio-temporal data data1_2D. 
In function tscsRegression, the selection of adjacent spatial locations is carried out just as 
what Fig 8 shows. 

 

Fig 8. The way of selecting adjacent spatial locations for 2D rectangular grid system. 
The red point is a given spatial location. The 8 yellow points are its adjacent spatial locations. 

> basis <- tscsRegression(data = data1_2D, h = 1, v = 1, alpha = 0.01) 
> basis$percentage 
1 

We can see that, with significance level 0.01, the percentage of cointegrated relationships 
is 100%, which means that the basic assumption of TSCS method is completely satisfied. This 
percentage is a measurement of the degree it satisfies the assumption of cointegrated system. 
It is highly affected by parameter alpha , the significance level you have set. Explicitly, 
smaller alpha  results in smaller percentage. 

Under cointegrated system data1_2D and newdata_2D, the work of estimating missing 
observations within newdata_2D can be done by utilizing tscsEstimate . 

> est <- list() 
> for (i in 3:9) { 
+  est[[i -2]] <- tscsEstimate(matrix = basis$coef_matrix, newdata = newdata_2D[,c(1:2,i)],  

h = 1, v = 1) 
+ } 

 

Fig 9. Graphic comparison between estimate and true value. 
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After spatial interpolation using TSCS method, provided that we have the true values of 
these missing observations saved in a list trueValues , a graphic comparison between true 
values and estimated values can be made by employing plot_compare  (Fig 9). In this case, the 
result of TSCS interpolation is evaluated by two appraisal indexes �� RMSE and standard 
deviation of error (they are clarified in the next part 3.3), as summarized in Table 1. 

Table 1. RMSE and standard deviation of error �� evaluation of TSCS interpolation result. 

 
�� t501  t525  t550  t575  t600  t625  t650  

RMSE 0.3455 0.3924 0.3502 0.3604 0.3595 0.3589 0.3757 

std 0.3452 0.3918 0.3498 0.3604 0.3595 0.3590 0.3752 

 
 

3.2.2 3D Rectangular Grid System 

    As to 3D rectangular grid system, the procedure of spatial interpolation using TSCS is 
analogous to 2D case in 3.2.1. 

For new spatio-temporal data newdata_3D, plot 3D_NA helps us view the missing 
observations more clearly. Taking the cross-section data at time of t=301 for example, we 
visualize the spatial distribution of missing observations in Fig 10 (A). 

> plot3D_NA(newdata_3D[,c(1:3,4)]) 

 
Fig 10. (a) Missing observations in cross-section data at time of t=301. 

(b) Spatial map of cross-section data at time of t=301. 

plot 3D_map draws three-dimensional spatial map with gradient grey for a cross-section 
data. For instance, at time of t=301, the cross-section data are visualized in Fig 10 (B). 

> plot3D_map(newdata[,c(1:3,4)]) 

With a basic overview of spatio-temporal data newdata_3D, we proceed to TSCS spatial 
interpolation. The first step is to obtain regression coefficient matrix through 
tscsRegression3D based on historical spatio-temporal data data1_3D. In function 
tscsRegression3D, the selection of adjacent spatial locations is carried out just as what Fig 
11 shows. 
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Fig 11. The way of selecting adjacent spatial locations for 3D rectangular grid system. 
The red point is a given spatial location. The 14 yellow points are its adjacent spatial locations. 

> basis <- tscsRegression3D(data = data1_3D, h1 = 1, h2 = 1, v = 1, alpha = 0.01) 
> basis$percentage 
1 

Likewise, with significance level 0.01, the percentage of cointegrated relationships is 
100%, which means that the basic assumption of TSCS method is completely satisfied. Under 
cointegrated system data1_3D and newdata_3D, estimation of missing observations within 
newdata_2D can be executed with the use of tscsEstimate3D. 

> est <- list() 
> for (i in 4:9) { 
+  est[[i-3]] <- tscsEstimate3D(matrix = basis$coef_matrix, newdata = newdata_3D[,c(1:3,i)],  

h1 = 1, h2 = 1, v = 1) 
+ } 

After spatial interpolation with TSCS, if  we have the true values of these missing 
observations saved in a list trueValues , the graphic comparison between true values and 
estimated values is arranged in Fig 12 (using plot_compare ). And the evaluation of TSCS 
interpolation result is summarized in Table 2. 

 
Fig 12. Graphic comparison between estimate and true value. 
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Table 2. RMSE and standard deviation of error �� evaluation of TSCS interpolation result. 

 
�� t301 t320  t340  t360  t380  t400  

RMSE 0.4907 0.5009 0.4802 0.4994 0.4883 0.4816 

std 0.4908 0.5007 0.4803 0.4986 0.4885 0.4809 

 
 

3.3 Some Properties 

The predictive ability of a model is of great concern. In the following, we study the three 
main influential factors for TSCS predictive performance. Our purpose of doing so is to provide 
us with insights into how to make more accurate estimations. Through repeated experiments 
of TSCS interpolation in a variety of cases, their results along with some important conclusions 
are summarized in 3.3.1 ~ 3.3.3. For convenience but without loss of generality, the repeated 
experiments in this section are also based on the 2D spatio-temporal data data1_2D, 
newdata_2D observed at a 2D rectangular grid system and the 3D spatio-temporal data 
data1_3D, newdata_3D observed at a 3D rectangular grid system. They are generated in 3.1.1 
and 3.1.2 respectively. 

In this article, two appraisal indexes are recommended to evaluate the performance of 
TSCS interpolation quantitatively. The first is root-mean-square error (RMSE), used for 
measuring the differences between estimated values by a model and the values actually 
observed. Smaller RMSE means more accurate interpolation. The second is standard deviation 
of error, used for measuring how far the errors are spread out from their mean, namely, 
stability of errors. Smaller value means greater stability of errors, suggesting that errors 
would not fluctuate heavily due to difference of data. 

 
3.3.1 Percentage of Missing Observation 

From Table 3, we can conclude that, for 2D rectangular grid system, the percentage of 
missing observation in a cross-section data greatly influences the predictive performance of 
TSCS if the percentage is more than 60%. However, when the percentage is lower than 60%, 
TS�����ï�• performance shows no much difference. 

From Table 4, we find that there is almost no difference between values in the whole table, 
although both RMSE and standard deviation of error slightly increase with the percentage of 
missing observation increasing. It is obvious that, for 3D rectangular grid system, the 
robustness of TSCS method is much more better than its dealing with 2D rectangular grid 
system. The root cause is probably out of the selection of adjacent spatial locations. In three-
dimensional cases, we select 14 adjacent spatial locations more than 8 in two-dimensional 
cases, thus including more information to explain the long-term equilibrium relationship that 
TSCS considers. 

Table 3. RMSE and standard deviation of error for different percentage of missing observation, 
in regard to TSCS interpolation based on 2D spatio-temporal data data1_2D and newdata_2D. 

 
Percentage t501  t525  t550  t575  t600  t625  t650  

 
4% 0.342 0.344 0.342 0.353 0.365 0.335 0.356 

12%  0.351 0.355 0.339 0.349 0.372 0.332 0.369 
20%  0.358 0.366 0.338 0.355 0.381 0.339 0.372 
28%  0.362 0.361 0.342 0.361 0.377 0.341 0.371 
36%  0.366 0.372 0.341 0.366 0.393 0.344 0.375 
44%  0.380 0.389 0.346 0.375 0.425 0.356 0.390 
52%  0.388 0.399 0.353 0.383 0.445 0.366 0.414 
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60%  0.454 0.464 0.377 0.449 0.582 0.398 0.509 
68%  0.737 0.566 0.564 0.517 0.752 0.610 0.677 
76%  0.563 0.638 0.444 0.550 0.747 0.495 0.622 
84%  1.591 1.980 1.136 1.927 2.488 1.328 2.132 

 
4% 0.339 0.345 0.342 0.353 0.364 0.336 0.355 

12%  0.351 0.355 0.338 0.349 0.372 0.332 0.369 
20%  0.358 0.365 0.338 0.355 0.381 0.339 0.372 
28%  0.362 0.361 0.341 0.360 0.376 0.341 0.371 
36%  0.366 0.372 0.340 0.365 0.393 0.343 0.375 
44%  0.380 0.389 0.344 0.375 0.424 0.354 0.389 
52%  0.388 0.398 0.349 0.383 0.444 0.364 0.413 
60%  0.454 0.463 0.373 0.448 0.580 0.394 0.507 
68%  0.736 0.564 0.556 0.516 0.751 0.601 0.675 
76%  0.562 0.637 0.423 0.546 0.746 0.473 0.616 
84%  1.588 1.978 1.071 1.910 2.486 1.256 2.100 

 
 

Table 4. RMSE and standard deviation of error for different percentage of missing observation, 
in regard to TSCS interpolation based on 3D spatio-temporal data data1_3D and newdata_3D. 

 
Percentage t301  t320  t340  t360  t380  t400  

 
10%  0.505 0.487 0.498 0.494 0.509 0.497 
20%  0.504 0.494 0.499 0.498 0.509 0.498 
30%  0.504 0.494 0.498 0.492 0.507 0.504 
40%  0.506 0.500 0.499 0.492 0.507 0.502 
50%  0.504 0.499 0.495 0.494 0.507 0.506 
60%  0.508 0.501 0.499 0.496 0.508 0.507 
70%  0.512 0.506 0.505 0.499 0.515 0.511 
80%  0.522 0.519 0.516 0.512 0.525 0.526 

 
10%  0.504 0.487 0.498 0.493 0.509 0.497 
20%  0.504 0.494 0.499 0.497 0.509 0.497 
30%  0.504 0.494 0.497 0.491 0.507 0.504 
40%  0.506 0.500 0.499 0.491 0.505 0.501 
50%  0.504 0.499 0.495 0.494 0.506 0.504 
60%  0.508 0.501 0.499 0.495 0.507 0.505 
70%  0.511 0.506 0.505 0.498 0.512 0.508 
80%  0.522 0.519 0.516 0.510 0.521 0.520 

 
 

3.3.2 Amount of Historical Spatio-Temporal Data 

Based on results summarized in Table 5 and Table 6, it is easy to conclude that with the 
amount of historical spatio-temporal data increasing, TSCS interpolation is generally more 
accurate and more robust. It is in conformity with our practical experience that the more 
historical data you have used, the better the results of prediction are. 

However, it is not always the case. The above conclusions are made based on a 
fundamental assumption that the system is relatively stable from past to future. As time goes, 
if some important properties of the system change greatly due to natural factors or human 
factors, the observed spatio-temporal data also changes a lot. Under this circumstance, a deep 
investigation needs to be carried out for figuring out how much historical data is usable. 
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Table 5. RMSE and standard deviation of error in regard to TSCS interpolation based on 
newdata_2D and different amount of historical spatio-temporal data from data1_2D. 

 
Time Span t501  t525  t550  t575  t600  t625  t650  

 
t1~t500  0.374 0.380 0.343 0.372 0.399 0.351 0.388 

t101~t500  0.379 0.387 0.346 0.381 0.415 0.360 0.404 
t201~t500  0.386 0.396 0.356 0.400 0.440 0.385 0.440 
t301~t500  0.389 0.407 0.381 0.433 0.486 0.450 0.514 
t401~t500  0.378 0.418 0.433 0.502 0.587 0.597 0.685 

 
t1~t500  0.374 0.380 0.342 0.372 0.399 0.351 0.387 

t101~t500  0.379 0.387 0.345 0.381 0.415 0.359 0.403 
t201~t500  0.385 0.395 0.354 0.400 0.440 0.384 0.439 
t301~t500  0.389 0.407 0.380 0.432 0.486 0.449 0.514 
t401~t500  0.378 0.418 0.431 0.502 0.586 0.596 0.685 

 
 

Table 6. RMSE and standard deviation of error in regard to TSCS interpolation based on 
newdata_3D and different amount of historical spatio-temporal data from data1_3D. 

 
Time Span t301  t320  t340  t360  t380  t400  

 
t1~t300  0.509 0.496 0.503 0.496 0.511 0.504 

t51~t300  0.513 0.502 0.508 0.502 0.519 0.513 
t101~t300  0.519 0.508 0.516 0.516 0.536 0.530 
t151~t300  0.529 0.522 0.533 0.542 0.572 0.573 
t201~t300  0.547 0.549 0.573 0.600 0.646 0.671 

 
t1~t300  0.509 0.496 0.502 0.496 0.510 0.503 

t51~t300  0.513 0.502 0.508 0.502 0.519 0.512 
t101~t300  0.519 0.508 0.516 0.515 0.535 0.528 
t151~t300  0.529 0.522 0.533 0.542 0.570 0.572 
t201~t300  0.547 0.549 0.573 0.600 0.645 0.670 

 
 

3.3.3 Step Length of Forward Prediction 

As you see in Fig 13 and Fig 14, with the step length of forward prediction growing, the 
accuracy of TSCS interpolation gets worse, especially when the historical data is not abundant. 
It  also corresponds with our rule of thumb that, for any prediction with uncertainty, the more 
steps ahead you choose, the less accurate prediction you make. 

 
Fig 13. RMSE and standard deviation of error for different step length of forward prediction 
in regard to TSCS interpolation based on 2D spatio-temporal data data1_2D and newdata_2D. 
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Fig 14. RMSE and standard deviation of error for different step length of forward prediction 
in regard to TSCS interpolation based on 3D spatio-temporal data data1_3D and newdata_3D. 

 

4 Example: Analysis of GHCND Date Set 

As what we have demonstrated in previous sections, TSCS method is simple and easy to 
use without model selection, parameter adjustment or requirement of subjective judgement. 
Moreover, it generally possesses high accuracy and good robustness when making 
interpolation. In most cases, if we have enough historical spatio-temporal data in hand, the 
main time-consuming work before TSCS interpolation is data pre-processing. Although it is a 
purely spatial interpolation method, these idiosyncrasies give it a chance to be regarded as a 
desirable alternative to existing spatio-temporal interpolation methods in some cases, where 
we merely intend to interpolate a series of cross-section data at each observed time point for 
a given spatial domain. 

In this section, we are aimed at illustrating the strengths of TSCS in comparison with 
spatio-temporal kriging, one of the state-of-the-art spatio-temporal interpolation methods, in 
a real-world application based on Global Historical Climatology Network Data (GHCND) data 
sets. These strengths mainly �”�‡�ˆ�‡�”���–�‘�����������ï�•��good performance when dealing with a class of 
spatio-temporal interpolation problem introduced in the second paragraph of Introduction 
(please refer back to Fig 1). 

 
4.1 Data Set 

The real data that we select is named GHCND, which can be downloaded from URL 
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/grid . The GHCND gridded dataset (HadGHCND) 
is produced through a joint effort between the United States National Oceanic and 
Atmospheric Administration (National Climatic Data Center) and the United Kingdom's 
Hadley Centre. 

This big data set includes daily maximum temperature and minimum temperature from 
1950 to 2016. The term temperature here does not mean real temperature but denotes 
temperature anomaly. The anomalies were calculated with respect to the following base 
period: 1961 to 1990. Hence, data of every year includes 2 data sets �� tmax (daily maximum 
temperature anomaly) and tmin (daily minimum temperature anomaly). Besides, each of data 
set contains the following 6 columns (variables). 

1st column: Month 
2nd column: Day 
3rd column: Grid box ID (value range: 1 to 7002, grid spacing = 3.75 deg�¯ 2.5 deg) 
4th column: Longitude of lower left corner of grid box (degrees) 
5th column: Latitude of lower left corner of grid box (degrees) 
6th column: Temperature anomaly (whole degrees Celsius) 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/grid
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After appropriate data pre-processing for the purpose of implementing TSCS spatial 
interpolation using package TSCS, we decide to select data sets of daily maximum temperature 
anomaly from 2008 to 2012 as historical spatio-temporal data. Meanwhile, the new spatio-
temporal data are 5 cross-section data selected in 2013 �� 2013.1.1, 2013.4.2, 2013.7.2, 
2013.10.1 and 2013.12.31. 

The spatial domain of above data set is a 2D rectangular grid system, where every spatial 
location is a geo-spatial point in the world pinpointed by unique longitude and latitude. The 
distribution of these geo-spatial points covers almost the entire land area on the earth. (Fig 
15,16,17) 

 
Fig 15. Missing observations in new spatio-temporal data. 

 

 
Fig 16. Missing observations in cross-section data on 2013.1.1 (using plot_NA). 
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Fig 17. Spatial map of cross-section data on 2013.12.31 (using plot_map). 

 
4.2 Spatio-Temporal Kriging 

The following procedures about spatio-temporal kriging are all carried out by package 
gstat. Please refer to paper (Benedikt Graler et al. 2016) for more details. 

Based on processed GHCND spatio-temporal data, the sample variogram is calculated and 
plotted in Fig18. After trying separable covariance model, product-sum covariance model, 
metric covariance model and sum-metric covariance model, the best fitting spatio-temporal 
variogram model is the product-sum covariance model, which can be identified from Table 7. 

Table 7. Weighted MSE for different spatio-temporal variogram families and different choices for the 
one-dimensional variogram components. Columns denote the spatial and temporal variogram choices. 

The metric model is only applicable if both domains use the same family. 

 
model joint  Exp+Exp Exp+Sph Sph+Exp Sph+Sph Mat 

 
separable ��  10.22 10.74 10.22 10.74 �� 

product-sum ��  4.13 5.30 1.25 2.67 �� 
metric ��  3.31 �� �� 9.82 9.82 

sum-metric 
Exp  26.27 10.77 19.82 18.03 �� 
Sph  4.05 4.22 5.10 4.45 �� 

 
 

A wireframe (3D) plot of sample variogram and the best fitting spatio-temporal 
variogram model in each family are presented in Fig 18. 
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Fig 18. Sample variogram and fitted variogram models. 

 

 
Fig 19. The full spatial map of data in 2013 after spatio-temporal interpolation 

using the product-sum covariance model. 

As to spatio-temporal data of 2013, the full spatial map after interpolation using spatio-
temporal kriging is presented in Fig 19. Moreover, since we have the true values of missing 
observations designated by white dots in Fig 15, a graphic comparison between true values 
and interpolation results are made for each spatial data on 2013.1.1, 2013.4.2, 2013.7.2, 
2013.10.1 and 2013.12.31. They are shown in Fig 20 and the evaluation of TSCS interpolation 
result is summarized in Table 8. 



23 
 

Table 8 RMSE and standard deviation of error �� evaluation of spatio-temporal kriging interpolation result. 

 
�� 2013.1.1 2013.4.2 2013.7.2 2013.10.1 2013.12.31 

RMSE 1.6721 1.3078 1.2687 1.2353 1.1197 

std 1.6750 1.3059 1.2567 1.2376 1.1216 

 

 
Fig 20. Graphic comparison between estimate and true value. 

 
4.3 TSCS 

Using TSCS package again, we interpolate the 5 cross-section data in the year of 2013. 
Likewise, the graphic comparison between true values and estimated values is shown in Fig 
21 and the evaluation of TSCS interpolation result is summarized in Table 9. 

Table 9 RMSE and standard deviation of error �� evaluation of TSCS interpolation result. 

 
�� 2013.1.1 2013.4.2 2013.7.2 2013.10.1 2013.12.31 

RMSE 0.3974 0.2783 0.3571 0.3289 0.4188 

std 0.3983 0.2790 0.3560 0.3297 0.4183 
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Fig 21. Graphic comparison between estimate and true value. 

 

5 Discussion 

5.1 Remarks 

TSCS is not an ad hoc spatial interpolation method for certain specialized fields such as 
geostatistics but a general one. To some extent, TSCS is an original prototype to be modified 
or developed for more elaborate and specialized areas. 
    The selection of adjacent spatial locations is flexible indeed, not restricted to 8 neighbors 
for 2D rectangular grid system (Fig 8) or 14 neighbors for 3D rectangular grid system (Fig 11). 
In fact, any number of neighbors can be considered because the theory basis of TSCS is 
cointegrated relationship, but a more scientific way of selecting neighbors surely leads to more 
accurate interpolation. In the next major release of package TSCS, parameter method will be 
added to key functions �� tscsRegression, tscsRegression3D, tscsEstimate and 
tscsEstimate3D , offering several alternatives of neighbor selection method. We will also add 
parameter number  to them for the convenience of setting the number of neighbors freely. 
Theoretically, you can select more neighbors than normal or even all of the spatial locations in 
the whole map. This perhaps increase the accuracy of TSCS interpolation but it may be terribly 
time-consuming due to the limited computer performance currently. But then again, in most 
cases, 8 neighbors for 2D rectangular grid system (Fig 8) or 14 neighbors for 3D rectangular 
grid system (Fig 11) is enough to efficaciously cope with many spatial interpolation problems, 
but including more neighbors barely �‹�•�…�”�‡�ƒ�•�‡�•�� ���������ï�•��accuracy, which is concluded from 
hundreds of simulated experiments. 

TSCS is highly dependent on historical data, the historical spatio-temporal data. Hence, 
TSCS would be useless without it and TSCS will also be paralyzed if it  is scarce. This is because 
the modelling of cointegrated relationship requires abundant time series data. For more 
details about what factors �ƒ�ˆ�ˆ�‡�…�–�����������ï�•���’�‡�”�ˆ�‘�”�•�ƒ�•�…�‡, please refer back to 3.3. 

Last but not least, we need to make it explicit that the basic assumption of TSCS method 
�� cointegrated system, is easily satisfied in the real world, even though it seems demanding. In 
a certain spatial domain, if the spatial locations distribute densely and the distance between 
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adjacent spatial locations is small enough, their variation trends in time series are often 
analogous so they would probably show strong correlations as time goes on, in other words, 
the long-term equilibrium relationship. In theory, long-term equilibrium relationship is 
equivalent to cointegrated relationship in some disciplines like econometrics. In further study, 
we want to research what adjustment we can make if the percentage of cointegration 
relationships fall short of 100% seriously and how this percentage, a property of data set, 
�‹�•�ˆ�Ž�—�‡�•�…�‡�•�����������ï�•���’�‡�”�ˆ�‘�”�•�ƒ�•�…�‡�ä 

 
5.2 Unsettled Problems 

In regard to TSCS method, there is a minor defect both in theory and algorithm. Due to 
this defect, missing value is not allowed in historical spatio-temporal data. Therefore, we 
should take certain approaches to fill up these missing observations in advance, before making 
spatial interpolation with the package TSCS. It is a merely technical problem but requires 
further study with more effort on theory and its algorithmic details programmed with R. 

TSCS of current version 0.1.1 is only able to handle spatio-temporal data collected on 2D 
or 3D rectangular grid system, two typical cases common in real life. Moreover, TSCS method 
of the current theory is only capable of interpolation but not extrapolation. It is unable to 
estimate missing observation located in the boundary or beyond the range of a given spatial 
domain. On balance, these problems result from theoretical flaws which remain to be further 
studied. These unsettled problems are expected to be solved in the next major release of the 
package TSCS. 
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