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Abstract

We propose an innovative method for spatial interpation called TSCS (abbr. of Time
Series Cointegrated System), which is based on ctigration theory and multiple linear
regression. It considers long-term equilibrium relatonship and requires making useof
historical spatio-temporal data, thoughit is a purely spatial interpolation method. TSCS bear
two main advantages. Firstly, it generally performswell when making interpolation and
possesses high robustness. Furthermore, it is relaely simple and easy to implement without
model selection, parameter adjustment or requiremenbf subjective judgement, giving it a
chance to be regarded as a desirable alternative texisting spatio-temporal interpolation
methods in some cases where we merely intend to integlate a series of cross-section data at
each observed time point for a given spatial domain.

The theory framework of TSCS is presented first. The through simulation study, we
show its high accuracy of interpolation along withgood robustness. Furthermore, some
properties of TSCS referring to its performance arstudied via repeated experiments. Next,
TSCS is compared with spatio-temporal kriging in a et-world application, based on the
GHCND data set, concerning spattemporal interpolation, which illustrates the prominent
strengths of TSCS in some specific cases.

Additionally, an R package name@SCSs built for carrying out TSCS spatial interpolatin
method. R code of each function is presented in sinatlon study to demonstrate the workflow
of TSCS using this package.
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1 Introduction

The collection and processing of spatio-temporal dat is rapidly increasing due to
technological advances and the societal need for alysis of variables that vary in space and
time, such as weather and air quality variables. Neadays, modern sensors allow to monitor
different variables at an increasing temporal resoltion producing rich spatio-temporal data
sets. With ubiquitous spatio-temporal data, relevanproblems about how to comprehend and
make full use of them have also penetrated into varus fields. Purely spatial interpolation
(Hua Xu 2013, like kriging (Stein, M. L 1999, if resorting to spatio-temporal data can
potentially provide more accurate predictions than without considering them because
observations taken at other times can be includedf analysis.

Bigger data set leads to more time-consuming algohitn and, meanwhile, taking time into
account makes model much more complex. It is fairly difult to find the best or the most
convenient model when dealing with spatio-temporaldata. Accordingly, with the recent

development of geostatistics, meteorology and econonmts, many methods have been
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proposed to handle spatio-temporal data, strugglindor spatio-temporal interpolation, such
as spatio-temporal kriging Benedikt Graler et al. 2018, STARMA [elix Cheysson 201}
random field (Martin Schlather et al. 2019 and Gaussian spatio-temporal processJ¢han
Lindstrom et al. 2013. They are widely accepted and all perform well o large class of
problems respectively. However, after applying thelaove methodsto real data, we discern two
main problems. One is that these methods are very coitigated based on various intricate
models and substantial parameters. They more or leggequire subjective judgements from
human and a cumbersome process of model selection. Thether problem is that these
methods fail to efficaciously deal with a class opgatio-temporal interpolation problem, where
the historical spatio-temporal data is relatively fill while the new spatio-temporal data, with
numerous missing observations thatve want to interpolate at each observed time point, i
series of cross-section data which is sparse in tieddimension (see Fig 1). Since the new spatio-
temporal data to be interpolated is sparse in time inension, it is hard to establish a model of
good fit analyzing historical data and new data simitaneously. Hence, the performance of
interpolation would not be good enough. Moreoverfithe time interval between historical data
and new data is large, the performance will only gevorse.

missing
r A ~ missing missing
i
I n missing
observations
time
substantial historical spatio-temporal data a series of cross-section data

composing spatio-temporal data
which is sparse in time dimension

Fig 1. Problem clarification.

As a consequencewe propose a new method called TSCS (abbr. of Time iBsr
Cointegrated System) to cope with the problems disssed above. This method possesses two
advantages On the one hand, it generally performs well when makyg interpolation and
possesses high robustness. On the other hand, isisnple and easy to employ without the need
of model selection, parameter adjustment and subjectiveidgement.

Theoretically, TSCS derives from cointegration theg and multiple linear regression. In
the process of coming up with this method, we shifbur perspective towards cointegration
and spatio-temporal data simultaneously in an outside¢he-box manner, a far cry from existing
spatial interpolation methods and spatio-temporal moelling theory. The main consideration
of TSCS is the long-term equilibrium relationship b&een spatial locations instead of
involving spatio-temporal covariance function or ceariate in most spatio-temporal modelling
methods (Johan Lindstrom et al. 2013Martin Schlather et al. 201%, variogram and anisotropy
in spatio-temporal kriging (Benedikt Graler et al. 2019, etc.

The rest of this paper is organized as follows. I8ection 2, we describe the core idea of
TSCS method firstThen, we make clear the definitions of key conceptiext, the detailed
process of TSCS and its theory are demonstrated. &ection 3, based on specially simulated
data, we show the resultof simulation study from 2D and 3D rectangular grid ywstem
separately. Meanwhile, the workflow of spatial intepolation using R package TSCSis
presented. In Section 4we compare TSCS with spatio-temporal kriging, one tliie state-of-
the-art spatio-temporal interpolation methods, in areal-world application concerning the
GHCND data set, to illustrate the strengths of TSG®ie paper is concluded by some remarks
in Section 5, where the drawbacks of TSCS and souresettled problems are tersely stated.



2 Method
2.1 Overview of TSCS

In the context of geostatistics Ponald E. Myer}, a natural spatio-temporal data set can
be an observation set yielded from space geodetigstem, meteorological observing system
or just a simple farmland monitor net Under the circumstance we mentioned before, suppose
the spatio-temporal data set to be interpolated is@mposed of a series of cross-section data
which is sparse in time dimension, with numerous missig observations that we intend to
predict at each observed time point. Meanwhile, whave enough historical spatio-temporal
data in hand. (see Fig 1)

TSCS is based on cointegration theory and multiplenear regression, the core idea of
which is as follows. In the spatial domain of the da set mentioned above, we consider that
every spatial location includes an individual timeseries. Theoretically, we first assume that
for any spatial location within spatial domain, itstime series and the time series of its adjacent
spatial locations are cointegrated (cointegrated sstem). Then, based on historical spatio-
temporal data, for each spatial location along withts adjacent locations, we calculate the
regression coefficients through multiple linear regession. Finally, with the use of the
regressive relationship obtained through establishing system of linear equations andolving
it, missing observations are estimated. Our reasoning that the regression function obtained
on the strength of historical spatio-temporal data $ able to explicate the long-term
equilibrium relationships between spatial locations,which means the correlations still hold
in the future if the system property is relatively stable. Thus, we can utilize the regression
coefficients for missing value prediction.

Strictly speaking, TSCS is not a general spatio-teoyal interpolation method for two
reasons. First, as we have emphasized before, thawad work of TSCS is making interpolation
in a new data set (posterior) on the basis of anatyng historical spatio-temporal data (anterior)
in hand (see Fig 1), rather than purely interpolatig within a single data set. Second, in the
process of estimating missing observations, TSCS liies each cross-section data separately,
which is unable to give prediction in a time pointwhose cross-section data is entirely absent
Hence, it should be regarded as a purely spatial terpolation method but includes the
consideration of time series and cointegrated reladbnship.

2.2 Definitions of Key Concepts

The following key concepts will be used repeatedIy this paper. Definition 3 are created
in the context of TSCS exclusively, for the convemice of further statement. The others are
existing in academia.

Definition 1. Stationary (weak stationary) time seri es.A stationary time series X, is
a finite varianceprocess such that:
(i) the mean value function A is constant and does notlepend on time t.
(ii) the autocovariance function JS,t) depends on time s and t only through their

difference |S t| )

Definition 2. Cointegrated relationship. Cointegration is astatistical property of a
collection (X, Xy,...,X, ) of time seriesvariables. First, all of the series must be integred
of order one. Next, if there exists a linear combirtimn of this collection integrated of order

zero, then the collection is said to be cointegrate Cointegration means long-term equilibrium
relationship.



Definition 3. Cointegrated system. In the context of TSCS, cointegrated system is asda
of spatio-temporal data. Firstly, in the spatial doma of the data, we consider that every
spatial location includes an individual time series(missing values are allowed)If the data
satisfies that, for any spatial location, its timeeries and the time series of its adjacent spatial
locations are cointegrated, it is said to be a cadiegrated system.

Definition 4. Cross-section data. Cross-section datais a type ofdata collected by
observing many subjects (for example, spatial locatns in the context of geostatistics) at the
same point of time, without regard to differences irtime. (see Fig?)

|— cross-section data

t(1) (i) t(n) time

spatio-temporal data

Fig 2. Definition illustration.

2.3 Detailed Statement of TSCS

In the following 2.3.1 ~ 2.3.4we clearly elaborate the four essential steps ofSCS
procedure in order, but we decide to take 2D rectangular grid system faxample only. This is
because the theory and procedure stays identical nmatter for 2D or 3D rectangular grid
system and the only difference is the selection afdjacent spatial locations along with
algorithmic details. $ T ei— eftt —*' ofef "fFt—offe— "fRhofed

Suppose, in a given 2D rectangular grid systeiwe have the following spatio-temporal
data.

(i) Spatial domain S along with coordinates of spatial locations (X;,Y), i 1,2,..n

(i) Spatio-temporal data in temporal domain T : Z "z(q, t), s, t),.... A3 ,rj;)\,
where (S,1),(S, 1), (S, 1) SuT ZR*> ®

(iii) Spatio-temporal data in temporal domain T": Z~ &(q, £). s, b).... A5, ),
where (Si,tf),(sz, t2 ) (S, ,I; YeSuT ¥ R

In addition, T is anterior to T~ in time axis. Consequently,Z is called historical

spatio-temporal data while Z* is the new spatio-temporal data we are interestedh, with
missing observations to be interpolated.

2.3.1 Cointegration Test

The basic assumption of TSCS method is that botd and Z enjoying the same
spatial domain S can be regarded as a cointegrated system. Henceintegration test is
necessary before TSCS is put into use.



Spurious relationship (Anindya Banerjee et al. 199Bis a common problem in statistics
As is known to all, whether a valid regression modelan be established between a collection
of time series depends on if cointegrated relationsipi exists between them. Provided that
these time series are not cointegrated, the residliaf fitting is a nonstationary time series
leading to spurious relationship. In this case, theegression function obtained cannotruly
explain the long-term equilibrium relationship between these variables even if it is a good fit
statistically. Therefore, cointegration test must e done before building regression model
between multiple time series Shiying Zhang et al. 201}

The prerequisite of cointegration test is thatall of the time series considered must be
integrated of one, namely, first-order difference t@tionary. As a result, after setting
significance level, we first test first-order diffeence stationarity of time series forevery spatial
location in spatial domain Next, within the whole spatial domain, only if forany spatial
location, its time series bears a cointegrated reteonship with the time series of its adjacent
spatial locations proved by cointegration test, can it make sense tose the regression
functions obtained for estimation later.

Detailed procedure about cointegration test is demuastrated in the next part2.3.2in that
regression analysis is in correspondence with estiating cointegration coefficients by means
of OLS (Orthogonal Least Square) metho&liying Zhang et al. 2014

2.3.2 Obtaining Regression Coefficients Matrix

To begin with, we assert that TSCS is only capalointerpolation but not extrapolation.
TSCS is unable to estimate missing observation loedtin the boundary or beyond the range
of a given spatial domain.

Since there is no distinction between obtaining regssion coefficients and calculating
cointegration coefficients through OLS method, aftedistinguishing interior spatial locations
from spatial domain boundary, we establish the follwing regression model (Michael H.

Kutner et al. 1989 for every interior spatial location § ¢S along with its J adjacent

spatial locations §, $i)s-++ 55y * S-

J

S C

l

In this model, 4 denotes random error term that satisfies E(A4 O and

var(,) H> f, K and A are uncorrelated (U zV). Since we are takinga 2D

u
rectangular grid system as an exemplificative casthe selection of adjacent spatial locations
can be decided as what Fig 3 shows. Thus, hex¢ 8.

S, S
i(8) i(2
S:-'U) (2)
S“-‘ 7 S 3
1N S i3)
Sice) Sis) Sy

Fig 3. Selection of adjacent spatial locations for 2D reahgular grid system.
Based on sample z(s,1), A g, 0, £ S, bos 4§, ], teT from historical
spatio-temporal data Z ,we obtain the following fitting function.
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According to cointegration theory, the behavior ofresidual € determines whether

spurious correlation occurs. For a given significace level generally set to 0.05, through unit
root test (Alok Bhargaval986), if we conclude that € is stationary,we can say the collection

of time series (S, %), A§y, ), £, b 4§y, ], t*T s cointegrated. Under
cointegrated system (sedefinition 3 ), the basic assumption of TSCS method, using historical
spatio-temporal data Z , we obtain the regression coefficient vector %6 ( Q ﬁo, o for
every interior spatial location, stored into a matrk 4. The regression coefficient matrix 4

is used for missing value estimation in spatio-tempal data Z" .

2.3.3 Searching for Subdomain with Missing Observation

In the process of estimating missing observation inatio-temporal data Z*, TSCS
works on each cross-section data separately and d@nly deals with the subdomain with
missing observation, without involving other parts d the spatial domain Hence, we need to

search out these subdomains with missing observatiomside each cross-section data inZ" .
For the sake of simplicitywe might as well focus on one cross-section dat& (t;) 77

at time of t; T asan example (see Fi§j), where the missing observations are denoted by
following notations.

Vi ASawpt): % ASep b ¥ Ao H)Z (§)
51(1)’ $1(2)1""$|(9) ¢S and t; OT*

10

-5

-10

-10 -5 0 5 10

Fig 4. Three subdomains with missing observation in one @ss-section data.
Each lattice denotes a spatial location. Blue lat# refers to spatial domain boundary.
Red lattice refers to subdomain boundary. Yellow tlce designates missing observation.

According to the spatial distribution of y,,Y,,...,Y,, we discover three subdomains

with missing observation in total, denoted by S={S,qy Sy St + S={Sy and
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S S5y Siey Sy Sey Bep - Where S, S, S Z S. Here it is quite necessary to
emphasize that he missing observation can be spatially isolated or ediguous in group within
subdomain.

2.3.4 Solving System of Linear Equations

Now we proceed to the last stage because all subdomawith missing observation have
been searched out. With the use of regression coefent matrix 4 obtained from historical

spatio-temporal data Z , in combination with the cross-section data at timeof t;, we
establish the following system of linear equationdor each subdomain S, S,, S, where

Vi ¥,--Y, are considered as variables. The meanings &, ~a,, b ~b, and ¢ ~c,
are demonstrated in Figd.
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Next, we combine the three systems of linear equatigninto one joint system of linear
equations. By transposition, its characteristics are more exjitit.
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The solution of the above joint system of linear edations is the estimation of missing
observations Y,,Y,,...,Y,- Similarly, for every cross-section data in Z* to be interpolated,

we estimate its missing observations in the way demomated above. Up to now TSCS
interpolation is completed. We can see that TSCSaispatial interpolation method in nature,
but it is able to solve part of spatio-temporal inérpolation problem.

On balance under cointegrated system Z and Z', we obtain regression coefficient
matrix 4 based on Z first. Suppose the cross-section dataZ  (t,) at time of t. has

missing observations Y,,Y,,...,Yx . Then, we search out subdomains with missing
observation S, S,,..., S K cdK . Next, using 4 and Z’(t,), we construct system of
linear equations ),,) ,,...) . With regard to subdomains S, S,,..., § .. Finally, by
solving the joint system of linear equations ’\) 1) 20 ke ‘, we obtain the estimation of
missing observations Y,, Y,,...,Y - In this way, we give prediction to missing observatn in

every cross-section data of Z* . Hereto, interpolation by means of TSCS is totatipmpleted.

3 Simulation Study

The three main objectives of simulation study are afollows.

First, in 3.2, to demonstrate the workflow of spatial interpolation using TSCS an R
package tailored for TSCS method. Here we emphastbhat TSCSof current version 0.1.1 is
only capable of handling spatio-temporal data basedn 2D and 3D rectangular grid system,
two typical cases common in real life. This packagen be downloaded from CRAN repository
at URLhttp://CRAN.R-project.org/package=TSCSAdditionally, other R packages that deals
with spatio-temporal models and data are summarized inthe relevant task view
(http://cran.r-project.org/web/views/SpatioTemporal.h _tml) on the Comprehensive R
Archive Network (CRAN)http://CRAN.R-project.org.

Second, in3.2, to show the predictive performance of TSCS. Spec#lly speaking, it
refers to T shigh accuracy and good robustness when it makingpatial interpolation.

Third, in 3.3, to study some properties of TSCS referring to itsredictive performance.
This part of research aims at figuring out what factrs affect the accuracy and robustness of
TSCS interpolation, in order to offer us some rulesf thumb on how to make a more effective
prediction using TSCS according to different situains.
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3.1 Data Generation

We decide to generate simulation data from 2D an@D rectangular grid system
separately. Each simulated data includes two parts a complete historical spatio-temporal
data (without missing value) and a new spatio-tempaal data with missing observations to be
interpolated. This data set is designed and generd resembling the observation set collected
by sensors in the field of geostatistics.

3.1.1 2D Rectangular Grid Sgsh
First of all, we create a 2D rectangular grid syste S regarded as the spatial domain of
spatio-temporal data to be generated Through combination of x 1,2,...,5( and
y 1,2,..,5C, we build a 2D rectangular grid system of 2500 spiat locations
S S, S S0 - Where 5 (X,Yy), i *7,2,..,2500 and X,y *1,2,..,50.
Next, we generate the overall spatio-temporal datahtough multiple time series of
temporal domain T /1,2,...,650 in all spatial locations S, S,,..., Sgy- The observed

values of spatial locations are denoted byz(s,t), S, ),..., A S50, §, t T . Before

building time series model, we generate the initiavalue of time series for every spatial
location with the following function.

1 3 2 1
f(x,y) —x? —y? Zx = 5
%) 100)g 100y' SX Q{
sin(r; )

a(r) "

i 1,2,..,250C and X,y *1,2,...,50

G Zxy.6):

p_No @ oo

Since we have obtained the initial value of time ses for every spatial location, after
careful consideration we build the following time series model Robert H. Shumway et al.
2015) to generate the overall spatio-temporal data.

z(s,t) asin(Z) bt w € i 12,..,250(andt 1,2,...,65(

In this expression, C, denotes initial value whent t, and asin(Zt) b T w

refers to function of time t in which Iy T is linear trend term, & sin(Zt) is periodic

iid
term and W, is white noise satisfying w, ~ 1(0, 7). Furthermore, values of these

parameters are as follows. a is arandom number from uniform distribution U 2,2, b

is arandom number from uniform distribution U ®,365, Z 1/3 and 7 0.09.

Here we split the overall spatio-temporal data intdwo parts. One is the historical spatio-
temporal data z(S, 1, 'S, ),...., A Sy, §, t 1,2,...,50( The other is the new spatio-

temporal data z(S,t), S, ),.... 5. 0, t 501,502,...,65. Within this new spatio-

temporal data, we select its cross-section data of different time points at regular intervals
t=501, t=525, t=550, t=575, t=600, t=625 and t=650Meanwhile, 300, 500, 1000, 800, 400,
700 and 600 observations are randomly deleted respdigely (2500 observations in total for
each cross-section data). Finally, we write the higrical spatio-temporal data and the
coordinates of its spatial domain into CSV filedatal 2D.csv. We also write the 7 cross-section
data and the same coordinates into CSV filegewdata_2D.csv.
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3.1.2 3D Rectangular Grid System

In a similar way,we first create a 3D rectangular grid systemS regarded as the spatial
domain of spatio-temporal data to be generated. Thigh combination of X 1,2,...,2(,
y 1,2,..,2Cand h 1,2,...,2(, we build a 3D rectangular grid system of 8000 spiai

locations S /S, S, S0 . Where § (X,y,h) , i°+7,2..,8000 and
x,y,h *,2,..,20.

Next, we generate the overall spatio-temporal datahtough multiple time series of
temporal domain T /1,2,...,400 in all spatial locations S, S,, ..., Syy- The observed

values of spatial locations are denoted byz(s,t), 'S, ),..., A §o. D, t T . Before

building time series model, we generate the initiavalue of time series for every spatial
location with the following function.

T foyh) x* y? R?
C Y R in(,
26 Y ht) % o(n) sin(;)

I.

i 1,2,..,800C and x,¥,h *,2,..,20

Since we have obtained the initial value of time ses for every spatial location, after
careful consideration, we build the following time series model Robert H. Shumway et al.
2015) to generate the overall spatio-temporal data.

z(s,t) asin(Zz) pt w ¢ i 1,2,..,800(andt 12,...,40(

In this expression, C, denotes initial value whent t, and asin(Zt) b T w

refers to function of time t in which b T is linear trend term, a sin(Zt) is periodic

iid
term and W, is white noise satisfying w, ~ 1(0, 7). Furthermore, values of these

it

1! |
=

, , o 3 2
parameters are as follows. g isarandom number from uniform distribution U > 3. b

is arandom number from uniform distributon U 8,40, Z 1/3 and 7 0.45.

Here we split the overall spatio-temporal data intawo parts. One is the historical spatio-
temporal data z(S, 1), 'S, 9,..., A §, 9. t 1,2,...,30( The other is the new spatio-

temporal data z(S,t), S, 9,.... A §, 0. t 301,302,...,40. Within this new spatio-

temporal data, we select its cross-section data of different time points at regular intervals
t=301, t=320, t=340, t=360, t=380 and t#00. Meanwhile, 800, 1300, 2500, 2000, 1000 and
1800 observations are randomly deleted respectively(8000 observations in total for each
cross-section data). Finally, we write the historial spatio-temporal data and the coordinates
of its spatial domain into CSV fileslatal 3D.csv. We also write the 6 cross-section data and
the same coordinates into CSV filesewdata_3D.csv.

3.1.3 Explanations

For the avoidance of doubt, in this part, we makeehr the reason why we choose the time
series model in3.1.1and 3.1.2together with parameter settings. Our consideratios are as
follows.
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For one thing, characteristic of typical time seris. A typical time series includes trend
term, periodic trend (season) and noise. We chooselditive model instead of multiplicative
model because we hope the value of observation wouldbt fluctuate drastically but change
gradually. Besides, we use a simple function to generate datasiead of ARIMA or GARCH
model because these time series models primarily dealith stationary time series (usually
difference of time series), but most of time seriet the real world are nonstationary.

For another, the basic assumption cointegrated systemAlthough 8 and b are setas

random numbers within a given bound respectively, caging a small difference in magnitude
of fluctuation, but the basic structure (Sin(Z1),t) of every time series is identical which

leads to similar variation behavior. By doing thatthrough augmented Dickey Fuller (ADF) test
with significance level D 0.0], time series data of every spatial location is integted of
order 1. Furthermore, it also works giving the percatage of cointegrated relationships, a
measurement of the degree our data satisfies the agaption of cointegrated system 100%.

3.2 Workflow of TSCS

In this section, we demonstrate the workflow of sptal interpolation using TSCSpackage
for 2D and 3D rectangular grid system respectivelBesides, the performance of TSCS handling
simulated data is presented and evaluated, referrintp its high accuracy and good robustness.

In the context of using TSCSpackage, the historical spatio-temporal data shoulde
arranged ina standard format for input. As to 2D rectangular gricsystem, it should be a data
frame containing these variables in order: X coordiate, Y coordinate and observations as time
goes on. As to 3D rectangular grid systent should beadata frame containing these variables
in order: X coordinate, Y coordinate, Z coordinatand observations as time goes on. For this
reason, data-preprocessing or data reconstructiorsinecessary beforehand.

In this package, the plotting functions for 2D an@D cases are built upomgygplot2 (Hadley
Wickham and Winston Chang 201ppackage andgl (Daniel Adler and Duncan Murdoch 201y
package respectively.

3.2.1 2D Rectangular Grid System

Missing observations in new spatio-temporal datamewdata_2D are shown in Fig5.

; gl T o o
Fig 5. Missing observations in newdata_2D.

If you want to view the missing observations more @arly, plot_NA can help you do this.
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501 faexample, we visualize the spatial distribution

Taking the cross-section data at time of t

of missing observations in Fig.
>plot_NA(newdata_2D[,c(1:2,3)])

40 50

30
12

Fig 7. Spatial mapof cross-section data at time of t=501.

X_coord

20
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Since we have an overview in mind of spatio-temporalatanewdata_2D, we proceed to
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TSCS spatial interpolation. The first step, also ¢hprerequisite, is obtaining regression



coefficient matrix with tscsRegression based on historical spatio-temporal datadatal 2D.
In function tscsRegression, the selection of adjacent spatial locations is caed out just as
what Fig 8 shows.

Fig 8. The way of selecting adjacent spatial locations f&D rectangular grid system.
The red point is a given spatial location. The 8 Jlew points are its adjacent spatial locations.

>basis <- tscsRegression(data = datal_2D, h =1, \alplia = 0.01)
>basis$percentage
1

We can see that, with significance level 0.01, tipercentage of cointegrated relationships
is 100%, which means that the basic assumption of TSCS methisdcompletely satisfied. This
percentage is a measurement of the degree it satiefi the assumption of cointegrated system.
It is highly affected by parameterlpha, the significance level you have set. Explicitly
smaller alpha results in smaller percentage.

Under cointegrated systendatal 2D andnewdata 2D, the work of estimating missing
observations within newdata_2D can be done by utilizingscsEstimate.

>est <- list()
>for (iin 3:9) {
+ esf[i-2]] <- tscsEstimate(matrix = basis$coef_matrix, newdatamewdata_2D[,c(1:2,i)],

h=1v=1)
+}
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Fig 9. Graphic comparison between estimate and true value.
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After spatial interpolation using TSCS method, progied that we have the true values of
these missing observations saved in a lidtueValues , a graphic comparison between true
values and estimated values can be made by employippt_compare (Fig 9). In this case, the
result of TSCS interpolation is evaluated by two gpaisal indexes RMSE and standard
deviation of error (they are clarified in the nextpart 3.3), as summarized in Table 1.

Table 1. RMSE and standard deviation of error evaluation of TSCS interpolation result.

t501 t525 t550 t575 t600 t625 t650
RMSE 0.3455 0.3924 0.3502 0.3604 0.3595 0.3589 0.3757
std  0.3452 0.3918 0.3498 0.3604 0.3595 0.3590 0.3752

3.2.2 3D Rectangular Grid System

As to 3D rectangular grid system, the procedura spatial interpolation using TSCSis
analogous to 2D case i8.2.1

For new spatio-temporal data newdata 3D, plot 3D_NA helps us view the missing
observations more clearly. Taking the cross-sectiodata at time of t=301 for example, we
visualize the spatial distribution of missing obserations in Fig10 (A).

>plot3D_NA(newdata_3D[,c(1;3)])

& r055—sectlorgspatlaljﬂqjata in tyme of L2 cross-sectionspatial) gata in yee of A01

l P B l’ J____—J——*_J_i___lri'“‘ﬂ—__

Fig 10. (a) Missing observations in cross-section data at timef t=301.
(b) Spatial mapof cross-section data at time of t=301.

plot 3D_map draws three-dimensional spatial map with gradient gey for a cross-section
data. For instance at time of t=301, the cross-section data are visuiaed in Fig 10 (B).

> plot3D_map(newdatal[,c(1:3)])

With a basic overview of spatio-temporal datanewdata_3D, we proceed to TSCS spatial
interpolation. The first step is to obtain regressbn coefficient matrix through
tscsRegression3D based on historical spatio-temporal datadatal 3D. In function
tscsRegression3D, the selection of adjacent spatial locations is caied out just as what Fig
11 shows.

14
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Fig 11. The way of selecting adjacent spatial locationsf@D rectangular grid system.
The red point is a given spatial location. Th&4 yellow points are its adjacent spatial locations.

> basis <- tscsRegressRkiD(data = datal 3D, hl=1,h2=1, v =1, alpha31)0.
> basis$percentage
1

Likewise, with significance level 0.01, the percentage of aaiegrated relationships is
100%, which means that the basic assumption of TSCS methadcompletely satisfied. Under
cointegrated systemdatal 3D andnewdata_3D, estimation of missing observations within
newdata_2D can be executed with the use décsEstimate 3D.

>est <- list()

> for (i in 4:9) {

+ est[[i-3]] <- tscsEstimat@D(matrix = basis$coef_matrix, newdata = newdata_3D{;8()],
hi1=1,h2=1,v=1)

+}

After spatial interpolation with TSCS if we have the true values of these missing
observations saved in a listtrueValues , the graphic comparison between true values and
estimated values is arranged in Fig 12 (usinglot_compare). And the evaluation of TSCS
interpolation result is summarized in Table 2.

91 1 g 124
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estimate
3

estimate

]
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3 0 4 8 12
true value true value true value

estimate
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=% 360 07 =% t380| 01 :Q{ 400
0 5 10 0 5 10 0 5 10 15
true value true value true value

Fig 12. Graphic comparison between estimate and true value.
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Table 2. RMSE and standard deviation of error evaluation of TSCS interpolation result.

t301 t320 t340 t360 t380 t400
RMSE 04907 0.5009 04802 04994 04883 04816
std 04908 0.5007 04803 0.4986 0.4885 0.4809

3.3 Some Properties

The predictive ability of a model is of great concer. In the following, we study the three
main influential factors for TSCS predictive performace. Our purpose of doing so is to provide
us with insights into how to make more accurate estiations. Through repeated experiments
of TSCS interpolation in a variety of cases, the&sults along with some important conclusions
are summarized in3.3.1 ~ 3.3.3For convenience but without loss of generalityhe repeated
experiments in this section are also based on the 2Bpatio-temporal data datal 2D,
newdata 2D observed at a 2D rectangular grid system and theDBspatio-temporal data
datal 3D, newdata_3D observedat a3D rectangular grid system. They are generated Bi1.1
and 3.1.2respectively.

In this article, two appraisal indexes are recommened to evaluate the performance of
TSCS interpolation quantitatively. The first is robmean-square error (RMSE), used for
measuring the differences between estimated valuesyba model and the values actually
observed. Smaller RMSE means more accurate interpatat. The second is standard deviation
of error, used for measuring how far the errors arespread out from their mean, namely,
stability of errors. Smaller value means greater stality of errors, suggesting that errors
would not fluctuate heavily due to difference of d&a.

3.3.1 Percentage of Missing Observation

From Table 3 we can conclude that, for 2D rectangular grid syste, the percentage of
missing observation in a cross-section data greatlypfluences the predictive performance of
TSCS if the percentage is more than 60%. Howevehen the percentage is lower than 60%,
TS i eperformance shows no much difference.

From Table 4, we find that there is almost no diffence between values in the whole table,
although both RMSE and standard deviation of erralightly increase with the percentage of
missing observation increasing. It is obvious thatfor 3D rectangular grid system, the
robustness of TSCS method is much more better thars itlealing with 2D rectangular grid
system. The root cause is probably out of the seléah of adjacent spatial locations. In three-
dimensional cases, we select 14 adjacent spatial &imns more than 8 in two-dimensional
cases, thus including more information to explain théong-term equilibrium relationship that
TSCS considers.

Table 3. RMSE and standard deviation of error for differenpercentage of missing observation,
in regard to TSCS interpolation based on 2D spattemporal datadatal 2D andnewdata_2D.

Percentage  t501 t525 t550 t575 t600 1625 t650

4% 0.342 0.344 0342 0353 0365 0.335 0.356
12% 0351 0.355 0339 0.349 0372 0.332 0.369
20% 0.358 0.366 0.338 0.355 0.381 0.339 0.372
28% 0.362 0.361 0.342 0.361 0377 0341 0.371
36% 0.366 0.372 0.341 0.366 0.393 0.344 0.375
44% 0.380 0.389 0.346 0.375 0425 0.356 0.390
52% 0.388 0.399 0.353 0.383 0445 0.366 0.414
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60% 0.454 0.464 0377 0.449 0.582 0.398 0.509

68% 0.737 0566 0.564 0.517 0.752 0.610 0.677
76% 0.563 0.638 0.444 0550 0.747 0.495 0.622
84% 1591 1980 1.136 1927 2488 1328 2.132
4% 0.339 0.345 0342 0.353 0.364 0.336 0.355
12% 0.351 0.355 0.338 0.349 0.372 0.332 0.369
20% 0.358 0.365 0.338 0.355 0.381 0.339 0.372
28% 0.362 0.361 0.341 0360 0376 0.341 0.371
36% 0.366 0.372 0.340 0.365 0.393 0.343 0.375
44% 0.380 0.389 0.344 0.375 0424 0.354 0.389
52% 0.388 0.398 0.349 0.383 0444 0.364 0.413
60% 0.454 0.463 0373 0.448 0580 0.394 0.507
68% 0.736 0564 0.556 0.516 0.751 0.601 0.675
76% 0.562 0.637 0423 0546 0.746 0473 0.616
84% 1588 1978 1.071 1910 2486 1.256 2.100

Table 4. RMSE and standard deviation of error for differenpercentage of missing observation,
in regard to TSCS interpolation based on 3D spatiemporal datadatal_3D andnewdata_3D.

Percentage 301 t320 t340 t360 t380 t400

10% 0.505 0.487 0.498 0.494 0.509 0.497
20% 0.504 0.494 0.499 0.498 0.509 0.498
30% 0.504 0.494 0.498 0.492 0.507 0.504
40% 0.506 0.500 0.499 0.492 0.507 0.502
50% 0.504 0.499 0.495 0.494 0.507 0.506
60% 0.508 0.501 0.499 0.49 0.508 0.507
70% 0.512 0.506 0.505 0.499 0,515 0.511
80% 0.522 0519 0.516 0.512 0525 0.526

10% 0.504 0.487 0.498 0.493 0.509 0.497
20% 0.504 0.494 0.499 0.497 0.509 0.497
30% 0.504 0.494 0497 0491 0.507 0.504

40% 0.506 0.500 0.499 0.491 0.505 0.501
50% 0.504 0.499 0.495 0.494 0.506 0.504
60% 0.508 0.501 0.499 0.495 0.507 0.505
70% 0.511 0.506 0.505 0.498 0.512 0.508
80% 0.522 0.519 0.516 0.510 0.521 0.520

3.3.2 Amount of Historical Spatio-Temporal Data

Based on results summarized in Table 5 and Tablei6js easy to conclude that with the
amount of historical spatio-temporal data increasing,TSCS interpolation is generally more
accurate and more robust. It is in conformity with ow practical experience that the more
historical data you have used, the better the restd of prediction are.

However, it is not always the case. The above couslons are made based on a
fundamental assumption that the system is relativelystable from past to future. As time goes,
if some important properties of the system change grely due to natural factors or human
factors, the observed spatio-temporal data also chages a lot. Under this circumstance, a deep
investigation needs to be carried out for figuringout how much historical data is usable.
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Table 5. RMSE and standard deviation of error in regard toSCS interpolation based on
newdata_2D and different amount of historical spatio-temporaldata fromdatal_2D.

Time Span  t501 t525 t550 t575 t600 t625 t650

t1~t500 0.374 0380 0.343 0372 0399 0351 0.388
t101~t500 0.379 0.387 0.346 0.381 0.415 0.360 0.404
t201~t500 0.386 0.396 0.356 0.400 0.440 0.385 0.440
t301~t500 0.389 0.407 0.381 0433 0486 0.450 0.514
t401~t500 0.378 0.418 0.433 0.502 0.587 0.597 0.685

t1~t500 0.374 0.380 0.342 0372 0.399 0.351 0.387
t101~t500 0.379 0.387 0.345 0381 0415 0.359 0.403
t201~t500 0.385 0.395 0.354 0.400 0.440 0.384 0.439
t301~t500 0.389 0.407 0.380 0432 0486 0.449 0,514
t401~t500 0.378 0.418 0431 0502 0.586 0.596 0.685

Table 6. RMSE and standard deviation of error in regard toSCS interpolation based on
newdata_3D and different amount of historical spatio-temporaldata from datal_3D.

Time Span t301  t320 t340 t360 t380  t400

t1~t300 0.509 0.496 0.503 0.496 0.511 0.504
t51~t300 0.513 0.502 0.508 0.502 0.519 0.513
t101~t300 0.519 0.508 0.516 0.516 0.536 0.530
t151~t300 0.529 0.522 0.533 0.542 0.572 0.573
t201~t300 0.547 0.549 0573 0.600 0.646 0.671

t1~t300 0.509 0.496 0.502 0.496 0.510 0.503
t51~t300 0.513 0.502 0.508 0.502 0.519 0.512
t101~t300 0.519 0.508 0.516 0.515 0.535 0.528
t151~t300 0.529 0.522 0.533 0.542 0.570 0.572
t201~t300 0.547 0.549 0.573 0.600 0.645 0.670

3.3.3 Step Length of Forward Prediction

As you see in Fig 13 and Fig 14, with the step letgof forward prediction growing, the
accuracy of TSCS interpolation gets worse, espetyahen the historical data is not abundant.
It also corresponds with our rule of thumb that, for ay prediction with uncertainty, the more
steps ahead you choose, the less accurate predictipou make.

Root Mean Squared Error Standard Deviation of Error

501 t525 550 1575 600 625 650 t501 1525 t550 575 600 t625 650
e 1~ 15,00 1101~t500 1201~t500 e— 11500 t101~t500 t201~t500

3011500 = t401~1500 13011500 == t401~t500

Fig 13. RMSE and standard deviation of error for differenstep length of forward prediction
in regard to TSCS interpolation based on 2D spatiemporal data datal_2D and newdata_2D.
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Root Mean Squared Error Standard Deviation of Error
0.65 0.65

0.55 0.55

1301 1320 1340 1360 1380 400 1301 1320 1340 1360 1380 400
e 11 ~£ 300 t51~1300 t101~t300 e 11~ 300 t51~1300 t101~t300

1151~t300 1201~t300 1151~t500 1201~t300

Fig 14. RMSE and standard deviation of error for differenstep length of forward prediction
in regard to TSCS interpolation based on 3D spatiemporal data datal_3D and newdata_3D.

4 Example: Analysis of GHCND Date Set

As what we have demonstrated in previous sections,SICS methods simple and easy to
use without model selection, parameter adjustment orequirement of subjective judgement.
Moreover, it generally possesses high accuracy andood robustness when making
interpolation. In most cases, if we have enough histical spatio-temporal data in hand, the
main time-consuming work before TSCS interpolation is data prefpcessing. Although it is a
purely spatial interpolation method, these idiosyncasies give it a chance to be regarded as a
desirable alternative to existing spatio-temporal nterpolation methods in some cases, where
we merely intend to interpolate a series of cross-sgion data at each observed time point for
a given spatial domain.

In this section, we are aimed at illustrating the sengths of TSCS in comparison with
spatio-temporal kriging, one of the statesf-the-art spatio-temporal interpolation methods, in
a real-world application based on Global HistoricaClimatology Network Data (GHCND) data
sets. These strengths mainly’+"+” —‘ godd performance when dealing with a class of
spatio-temporal interpolation problem introduced in the second paragraph ofntroduction
(please refer back to Fig 1).

4.1 Data Set

The real data that we select is named GHCND, whichn be downloaded from URL
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/grid . The GHCND gridded dataset (HadGHCND)
is produced through a joint effort between the Uniéd States National Oceanic and
Atmospheric Administration (National Climatic Data Ceter) and the United Kingdom's
Hadley Centre.

This big data set includes daily maximum temperature ahminimum temperature from
1950 to 2016. The termtemperature here does not mean real temperature but denotes
temperature anomaly. The anomalies were calculated wit respect to the following base
period: 1961 to 1990. Hence, data of every year ihales 2 data sets tmax (daily maximum
temperature anomaly) andtmin (daily minimum temperature anomaly). Besides, each afata
set contains the following 6 columns (variables).

1st column: Month

2nd column: Day

3rd column: Grid box ID (value range: 1 to 7002, gripacing = 3.75 deg 2.5 deg)

4th column: Longitude of lower left corner of grid boxdegrees)

5th column: Latitude of lower left corner of grid box(degrees)

6th column: Temperature anomaly (whole degrees Celsius)
19
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After appropriate data pre-processing for the purpos of implementing TSCS spatial
interpolation using packageTSCSwe decide to select data sets of daily maximum temiadure
anomaly from 2008 to 2012 as historical spatio-temporhdata. Meanwhile, the new spatio-
temporal data are 5 cross-section data selected in023 2013.1.1, 2013.4.2, 2013.7.2,
2013.10.1 and 2013.12.31.

The spatial domain of above data set is a 2D rectanlgr grid system, where every spatial
location is a geo-spatial point in the world pinponted by unique longitude and latitude. The
distribution of these geo-spatial points covers alrost the entire land area on the earth. (Fig

15,16,17)

-100 0 100
X

observations in system * missing * not missing

Fig 16. Missing observations in cross-section data on 201B.1 (using plot_NA).
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Fig 17. Spatial map of cross-section data on 2013.12.31 (g plot_map).

4.2 Spatio-Temporal Kriging

The following procedures about spatio-temporal krighg are all carried out by package
gstat. Please refer to paper Benedikt Graler et al. 201 for more details.

Based on processed GHCND spatio-temporal data, tlaergle variogram is calculated and
plotted in Figl8. After trying separable covariance model, product-suntovariance model,
metric covariance model and sum-metric covariance modgthe best fitting spatio-temporal
variogram model is the product-sum covariance model, lich can be identified from Table 7.

Table 7. Weighted MSE for different spatio-temporal variogran families and different choices for the
one-dimensional variogram components. Columns denotthe spatial and temporal variogram choices.
The metric model is only applicable if both domainsise the same family.

model joint Exp+Exp Exp+Sph Sph+Exp Sph+Sph  Mat
separable 10.22 10.74 10.22 10.74
product-sum 4.13 5.30 1.25 2.67

metric 3.31 9.82 9.82
sum-metric Exp 26.27 10.77 19.82 18.03
Sph 4.05 4.22 5.10 4.45

A wireframe (3D) plot of sample variogram and the bestfitting spatio-temporal
variogram model in each family are presented in Fig8.
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Fig 18. Sample variogram and fitted variogram models.

Fig 19. The full spatial map of data in 2013 after spatiogmporal interpolation

using the product-sum covariance model.

As to spatio-temporal data of 2013, the full spatiainap after interpolation using spatio-
temporal kriging is presented in Figl9. Moreover, since we have the true values of missing
observations designated by white dots in Fig.5, a graphic comparison between true values
and interpolation results are made for each spatiatiata on 2013.1.1, 2013.4.2, 2013.7.2,

2013.10.1 and 2013.12.31. They are shown in FRp and the evaluation of TSCS interpolation
result is summarized in Table 8.
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Table 8 RMSE and standard deviation of error evaluation of spatio-temporal kriging interpolation result.

2013.1.1 2013.4.2 2013.7.2 2013.10.1 2013.12.31
RMSE 1.6721 1.3078 1.2687 1.2353 1.1197
std 1.6750 1.3059 1.2567 1.2376 1.1216

Fig 20. Graphic comparison between estimate and true value.

4.3 TSCS

Using TSCSpackage again, we interpolate the 5 cross-sectiatata in the year of 2013.
Likewise, the graphic comparison between true valugand estimated values is shown in Fig
21 and the evaluation of TSCS interpolation resuis summarized in Table 9.

Table 9 RMSE and standard deviation of error evaluation of TSCS interpolation result.

2013.1.1 2013.4.2 2013.7.2 2013.10.1 2013.12.31
RMSE 0.3974 0.2783 0.3571 0.3289 0.4188
std 0.3983 0.2790 0.3560 0.3297 0.4183
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Fig 21. Graphic comparison between estimate and true value.

5 Discussion
5.1 Remarks

TSCS is not an ad hoc spatial interpolation methodrfcertain specialized fields such as
geostatistics but a general onelo some extent, TSCS is an original prototype to Ineodified
or developed for more elaborate and specialized ages.

The selection of adjacent spatial locations is flée indeed, not restricted to 8 neighbors
for 2D rectangular grid system (Fig) or 14 neighbors for 3D rectangular grid system (Fid1).
In fact, any number of neighbors can be consideredebause the theory basis of TSCS is
cointegrated relationship, butamore scientific way of selecting neighbors surely kds to more
accurate interpolation. In the next major release opackageTSCS parametermethod will be
added to key functions tscsRegression, tscsRegression3D, tscsEstimate and
tscsEstimate3D, offering several alternatives of neighbor seleatn method. We will also add
parameter number to them for the convenience of setting the numbeof neighbors freely.
Theoretically, you can select more neighbors than mmal or even all of the spatial locations in
the whole map. This perhaps increase the accuracy BECS interpolation but it may be terribly
time-consuming due to the limited computer performane currently. But then again, in most
cases, 8 neighbors for 2D rectangular grid systentrig 8) or 14 neighbors for 3D rectangular
grid system (Fig 11) is enough to efficaciously capwith many spatial interpolation problems,
but including more neighbors barely <« ... " f «$« accuracy, which is concluded from
hundreds of simulated experiments.

TSCS is highly dependent on historical data, thesrical spatio-temporal data. Hence,
TSCS wold be useless without it and TSCS will also be paralyzéfdt is scarce. This is because
the modelling of cointegrated relationship requiresabundant time series data. For more
details about what factors f “ " f ... — Te " 1”7 please refér back t@3.3.

Last but not least, we need to make it explicit thathe basic assumption of TSCS method

cointegrated system, i®asily satisfied in the real world, even though it sems demanding. In
a certain spatial domain, if the spatial locationsidtribute densely and the distance between
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adjacent spatial locations is small enough, their viation trends in time series are often
analogous so they would probably show strong correkions as time goes on, in other words,
the long-term equilibrium relationship. In theory, long-term equilibrium relationship is
equivalent to cointegrated relationship in some disiplines like econometrics. In further study,
we want to research what adjustment we can make if & percentage of cointegration
relationships fall short of 100% seriously and howthis percentage, a property of data set
<o"Z—Fe.  fo Te "f7 " "efe td

5.2 Unsettled Problems

In regard to TSCS method, there is a minor defect toin theory and algorithm. Due to
this defect, missing value is not allowed in histodal spatio-temporal data. Therefore, we
should take certain approaches to fill up these migsg observations in advance, before making
spatial interpolation with the package TSCS It is a merely technical problem but requires
further study with more effort on theory and its algorithmic details programmed with R.

TSCSof current version 0.1.1 is only able to handle spi@-temporal data collected on 2D
or 3D rectangular grid system, two typical cases comman real life. Moreover, TSCS method
of the current theory is only capable of interpolationbut not extrapolation. It is unable to
estimate missing observation located in the boundargr beyond the range of a given spatial
domain. On balance, these problems result from theorietl flaws which remain to be further
studied. These unsettled problems are expected tcetsolved in the next major releasef the
packageTSCS
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