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flars-package Functional least angle regression for functional linear regression with
scalar response and mixed scalar and functional covariates.

Description

This is a package for the variable selection problem in the functional linear regression model. The
model we target on has a scalar response, in other words, a continuous random variable following
Normal distribution. The candidate covariates could be either functional or scalar or a mixture of
the two. The algorithm is able to do selection when number of candidate variables is larger than the
sample size. The efficiency is from the idea of the Least Angle Regression and the stopping rule
that we designed for this algorithm.

Details

Package: flars
Type: Package
Version: 1.0
Date: 2016-05-28
License: GPL (>= 2)

Author(s)

Yafeng Cheng, Jian Qing Shi

Maintainer: Yafeng Cheng <yafeng.cheng@mrc-bsu.cam.ac.uk>

References

Cheng, Yafeng, Jian Qing Shi, and Janet Eyre. "Nonlinear Mixed-effects Scalar-on-function Models
and Variable Selection for Kinematic Upper Limb Movement Data." arXiv preprint arXiv:1605.06779
(2016).

data_generation Data generation function for examples.

Description

This function generates a few types of data with different correlation structures. The generated data
can be used in the examples provided in other functions such as the calculation of the functional
canonical correlation analysis and the functional least angle regression.
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Usage

data_generation(seed,nsamples=80,hyper=NULL,var_type=c('f','m'),
cor_type=1:6,uncorr=TRUE,nVar=8)

Arguments

seed Set the seed for random numbers.

nsamples Sample size of the data to generate.

hyper Hyper parameters used in the Gaussian process (GP). GP is used for building
the covariance structure of the functional variables.

var_type Two choices of the variable types. See details for more information.

cor_type Correlation structures. See details for more information.

uncorr Whether the variables are built based on linearly uncorrelated variables. See
details for more information.

nVar Number of base variables to generate. Note that this is not the exact number of
variables generated at the end.

Details

var_type could be either 'f' or 'm'. If var_type='f', only functional variables will be generated.
If var_type='m', both functional variables and scalar variables will be generated.

When uncorr is TRUE, a few linearly uncorrelated variables will be generated. This is to better
control the correlation structure of the variables using cor_type. If you want to generated a large
number of variables, uncorr should be FALSE.

cor_type are numbers from 1 to 6 or from 1 to 4 depending on the choices of var_type. This
is ONLY useful when we use the defaul number of variables, i.e., nVar=8 and the initial variables
are linearly uncorrelated, i.e., uncorr=TRUE. Bigger value of cor_type means more complicated
correlation structures.

If no correlation restriction is required for the variables, we can use cor_type=1.

nVar is the number of the base variables generated. It is recommaned that users can modify the
function to get their own data set. The other way is to use this function repeatedly to get enough both
functional and scalar variables. The response variable can be re-generated by the user. Increasing
the value of this argument may give NaN for the response variables.

Value

x List of covariates.

y Response variable.

BetaT True shape of the functional coefficients and true values of the scalar variables.

bConst Normalizing constants of the functional coefficients. True functional coeffi-
cients are the shape times the corresponding normalizing constant.

noise Random noise.

mu True intercept.
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Examples

library(flars)
dataL=data_generation(seed = 1,uncorr = TRUE,nVar = 8,nsamples = 120,

var_type = 'f',cor_type = 1)

fccaGen Functional canonical correlation analysis between a scalar variable
and a list of mixed scalar and functional variables.

Description

This function carries out the canonical correlation analysis between a scalar variable and a list
of mixed scalar and functional variables. There are four choices of the returned values and three
representation methods of the functional variables.

Usage

fccaGen(xL,yVec,type=c('dir','cor','a','all'),method=c('basis',
'gq','raw'),GCV=TRUE,control=list())

Arguments

xL The mixed scalar and functional variables. If there is only one functional vari-
able, xL can be a matrix. If there is only scalar variables, xL can be a vector
or a matrix. If there are more than one functional variables, or there are mixed
functional and scalar variables, xL should be a list. If xL is a list, each item of
the list should correspond to one variable.

yVec The scalar variable. It should be a matrix.
type The choice of outcomes. See details for more information.
method The representative methods for the functional coefficients. The method could

be one of the ’basis’, ’gq’ and ’raw’ for basis function expression, Gaussian
quadrature and representative data points, respectively.

GCV Use generalized cross validation (GCV) or not to choose the tuning parameter.
Logic argument. Currently the only choice is to use GCV.

control List of elements that controls the details of the functional coefficients. See de-
tails for more information.

Details

There are four choices of type in the function. ’dir’ means that the function only returns the direc-
tion coefficients like the one in the traditional Canonical correlation analysis. ’cor’ means that the
function only returns the correlation coefficients. ’a’ means that the function only returns the nor-
malized direction coefficients. With this normalization, the direction coefficients are equivalent to
the coefficients from a linear regression with response variable yVec and covariates xL. ’all’ means
that the function returns all three outcomes mentioned above.

The argument control is a list. It changes when different representative methods are used for the
functional coefficients. If (type==’basis’), the list contains the following items:
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• nbasis: Number of B-spline basis functions. Default value is 18.

• norder: Order of the basis functions. Default value is 6.

• pen1: The candidate values of the smoothing parameter. Default values are 10^(seq((-20),5,len=41))

• pen2: The candidate values of the ridge tuning parameter. Default value is 0.01

• t: IMPORTANT! The time points correspond to the discrete data points of the functional vari-
ables. Default to be seq(0,1,len=max(sapply(xL,ncol),na.rm = T)). Do NOT change
the starting and ending point of the sequence.

If (type==’gq’), the list contains the following items:

• nP: Number of Gaussian quadrature points. Default value is 18.

• pen1: The candidate values of the smoothing parameter. Default values are 10^(seq((-20),5,len=21))

• pen2: The candidate values of the ridge tuning parameter. Default value is 0.01

• t: IMPORTANT! The time points correspond to the discrete data points of the functional
variables. Default to be seq(-1,1,len=max(sapply(xL,ncol),na.rm = T)). Do NOT
change the starting and ending point of the sequence.

If (type==’raw’), the list contains the following items:

• pen1: The candidate values of the smoothing parameter. Default values are 10^(seq((-20),5,len=21))

• pen2: The candidate values of the ridge tuning parameter. Default value is 0.01

• t: IMPORTANT! The time points correspond to the discrete data points of the functional vari-
ables. Default to be seq(0,1,len=max(sapply(xL,ncol),na.rm = T)). Do NOT change
the starting and ending point of the sequence.

The function is designed to be able to handle the situation when different functional variables have
different number of discrete data points and the discrete data points could be non-evenly spaced.
This would require a list of t to input in the argument. However, this is not fully tested at the mo-
ment. For convenient, especially when we have a large number of functional variables, a universal
setting of t is recommended.

Value

corr Correlation coefficient. It is returned when type='corr' or type='all'

a Normalized direction coefficients. It is returned when type='a' or type='all'

dir Direction coefficients. It is returned when type='dir'

K Penalized covariance matrix. It is returned when type='all'.

gq Gaussian quadrature weights. It is returned when type='all'.

phiL Known part of the functional coefficients. E.g, basis functions. It is returned
when type='all'.

S Hat matrix. It is returned when type='all'.

lam1 The selected smoothing parameter. It is returned when type='all'.

lam2 The selected ridge parameter. It is returned when type='all'.

GCV_mat The GCV value. It is returned when type='all'.

TraceHat Trace of the hat matrix. It is returned when type='all'.
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Examples

library(flars)
## Generate some data.
dataL=data_generation(seed = 1,uncorr = TRUE,nVar = 8,nsamples = 120,

var_type = 'm',cor_type = 1)

## If there is only one functional variable
# out1=fccaGen(dataL$x[1], dataL$y, type='all', method='basis')

## If there are only a few scalar variables
# x=matrix(rnorm(3*length(dataL$y)),ncol=3)
# out2=fccaGen(x, dataL$y, type='all', method='basis')

## If there are mixed scalar and functional variables
# out3=fccaGen(dataL$x, dataL$y, type='all', method='basis')

fccaXX Canonical correlation analysis between two groups of mixed func-
tional and scalar variables

Description

This function carries out the canonical correlation analysis between two groups of mixed functional
and scalar variables. Three different representing methods can be used for the functional coeffi-
cients. The tuning parameters should be specified in the arguments control1 and control2 for the
two groups xL1 and xL2, respectively.

Usage

fccaXX(xL1,xL2,centre=TRUE,method=c('basis','gq','raw'),control1=list(),
control2=list(),tol=1e-7)

Arguments

xL1 The mixed scalar and functional variables. For any number and any type of
variables, xL1 should be a list. Each item of the list should correspond to one
variable.

xL2 Same as xL1.
centre Logic argument. Default is TRUE, which means the variables do need to be

centred.
method The representative methods for the functional coefficients. The method could

be one of the ’basis’, ’gq’ and ’raw’ for basis function expression, Gaussian
quadrature and representative data points, respectively.

control1 List of elements that controls the details of the functional coefficients for xL1.
See details for more information. See the argument control in function fccaGen
for details.

control2 Similar to control1.
tol The threshold to decide whether the correlation is to small to be non-zero.
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Details

This function uses Moore-Penrose generalized inverse in the calculation to avoid sigular problem.

Value

corr All the non-zero canonical correlation.
coef1 The corresponding coefficients (weights) for the xL1.
coef2 The corresponding coefficients (weights) for the xL2.

Examples

# library(flars)
# library(fda)
## Generate some data sets.
# dataL1=data_generation(seed = 1,uncorr = FALSE,nVar = 8,nsamples = 120,
# var_type = 'm',cor_type = 1)
# dataL1=dataL1$x

# dataL2=data_generation(seed = 2,uncorr = FALSE,nVar = 8,nsamples = 120,
# var_type = 'm',cor_type = 1)
# dataL2=dataL2$x

## cross validation
# outCV=fccaXXcv(xL1 = dataL1[1:2], xL2 = dataL2[1:2], method = 'basis'
# ,alpha = 10^seq(-6,0,len=5))

# cvCor=outCV$cor
# calculate the correlation
# out=fccaXX(dataL1, dataL2, method = 'basis',control1 = list(pen1=
# outCV$alpha[which.max(cvCor)]),control2 = list(pen1=
# outCV$alpha[which.max(cvCor)]))

fccaXXcv This function finds the best smoothing parameter for the canonical
correlation analysis for both groups of variables by using leave-one-
out (sample) cross validation. The criterion here is to maximise the
first canonical correlation.

Description

This function carries out the canonical correlation analysis between a scalar variable and a list
of mixed scalar and functional variables. There are four choices of the returned values and three
representation methods of the functional variables.

Usage

fccaXXcv(xL1,xL2,method=c('basis','gq','raw'),centre = TRUE,tol=1e-7,
Control1=list(),Control2=list(),alpha=10^seq(-6,1,len=10))
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Arguments

xL1 The mixed scalar and functional variables. For any number and any type of
variables, xL1 should be a list. Each item of the list should correspond to one
variable.

xL2 Same as xL1.

method The representative methods for the functional coefficients. The method could
be one of the ’basis’, ’gq’ and ’raw’ for basis function expression, Gaussian
quadrature and representative data points, respectively.

centre Logic argument. Default is TRUE, which means the variables do need to be
centred.

tol The threshold to decide whether the correlation is to small to be non-zero.

Control1 List of elements that controls the details of the functional coefficients for xL1.
See details for more information. See the argument control in function fccaGen
for details.

Control2 Similar to Control1.

alpha Candidate tuning parameters for the smoothness of the functional coefficients.

Details

Note that the smoothing parameters for both groups of variables are assumed to be the same. This
is due to high computational cost of cross validation. See the example in fccaXX.

Value

cor A vector of the first canonical correlation. Each element of the vector is corre-
sponding to one of the candidate tuning parameters.

alpha The corresponding tuning parameters.

flars Functional least angle regression.

Description

This is the main function for the functional least angle regression algorithm. Under certain con-
ditions, the function only needs the input of two arguments: x and y. This function can do both
variable selection and parameter estimation.

Usage

flars(x,y,method=c('basis','gq','raw'),max_selection,cv=c('gcv'),
normalize=c('trace','rank','norm','raw'),lasso=TRUE,check=1,
select=TRUE,VarThreshold=0.1,SignThreshold=0.8,
control=list())
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Arguments

x The mixed scalar and functional variables. Note that each of the functional
variables is expected to be stored in a matrix. Each row of the matrix should
represent a sample or a curve. If there is only one functional variable, x can be
a matrix. If there is only scalar variables, x can be a vector or a matrix. If there
are more than one functional variables, or there are mixed functional and scalar
variables, x should be a list. If x is a list, each item of the list should correspond
to one variable.

y The scalar variable. It can be a matrix or a vector.

method The representative methods for the functional coefficients. The method could
be one of the ’basis’, ’gq’ and ’raw’ for basis function expression, Gaussian
quadrature and representative data points, respectively.

max_selection Number of maximum selections when stopping the algorithm. Set a reasonable
number for this argument to increase the calculation speed.

cv Choise of cross validation. At the moment, the only choice is the generalized
cross validation, i.e., cv='gcv'.

lasso Use lasso modification or not. In other words, can variables selected in the
former iterations be removed in the later iterations.

check Type of check methods for lasso modification. 1 means variance check, 2 means
sign check. check=1 is much better than the other one.

select If TRUE, the aim is to do selection rather than parameter estimation, and the
stopping rule can be used when lasso=TRUE. If FALSE, the stopping rule may
not work when lasso=TRUE.

VarThreshold Threshold for removing variables based on variation explained. More specif-
ically, one condition to remove a variable is that the variation explained by a
variable is less than VarThreshold*Var(y). To remove this variable, there is
another condition: the variation explained by this variable is less than largest
variation it explained in the previous iterations.

SignThreshold This is a similar argument to VarThreshold. If a functional coefficient has less
than SignThreshold same as that from the previous iteration, the variable is
removed.

normalize Choice of normalization methods. This is to remove any effects caused by the
different dimensions of functional variables and scalar variables. Currently we
have trace, rank, norm, raw. norm and raw are recommended.

control list of control elements for the functional coefficients. See fccaGen for details.

Value

Mu Estimated intercept from each of the iterations

Beta Estimated functional coefficients from each of the iterations

alpha Distance along the directions from each of the iterations

p2_norm Normalization constant applied to each of the iterations

AllIndex All the index. If one variable is removed, it will become a negative index.
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index All the index at the end of the selection.

CD Stopping rule designed for this algorithm. The algorithm should stop when this
value is very small. Normally we can observe an obvious and severe drop of the
value.

resid Residual from each of the iteration.

RowMeans Point-wise mean of the functional variables and mean of the scalar variables.

RowSds Point-wise sd of the functional variables and sd of the scalar variables.

yMean Mean of the response variable.

ySD SD of the response variable.

p0 The projections obtained from each iteration without normalization.

cor1 The maximum correlation obtained from the first iteration.

lasso Weather have lasso step or not.

df The degrees of freedom calculated at the end of each iteration.

Sigma2Bar Estimated $sigma^2$.

StopStat Conventional stopping criteria.

varSplit The variation explained by each of the candidate variables at each iteration.

SignCheckF The proportion of sign changing for each of the candidate variables at each iter-
ation.

Examples

library(flars)
library(fda)
#### Ex1 ####
## Generate some data.
dataL=data_generation(seed = 1,uncorr = TRUE,nVar = 8,nsamples = 120,

var_type = 'm',cor_type = 3)

## Do the variable selection
out=flars(dataL$x,dataL$y,method='basis',max_selection=9,

normalize='norm',lasso=FALSE)

## Check the stopping point with CD
plot(2:length(out$alpha),out$CD) # plot the CD with the iteration number

## In simple problems we can try
(iter=which.max(diff(out$CD))+2)

#### Ex2 ####
## Generate some data.
# dataL=data_generation(seed = 1,uncorr = FALSE,nVar = 8,nsamples = 120,
# var_type = 'm',cor_type = 3)
## add more variables to the candidate
# for(i in 2:4){
# dataL0=data_generation(seed = i,uncorr = FALSE,nVar = 8,nsamples = 120,
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# var_type = 'm',cor_type = 3)
# dataL$x=c(dataL$x,dataL0$x)
# }
# names(dataL$x)=paste0('v_',seq(length(dataL$x)))

## Do the variable selection
# out=flars(dataL$x,dataL$y,method='basis',max_selection=9,
# normalize='norm',lasso=FALSE)

#### Ex3 (small subset of a real data set) ####
data(RealDa, package = 'flars')
out=flars(RealDa$x,RealDa$y,method='basis',max_selection=9,

normalize='norm',lasso=FALSE)
# out=flars(RealDa$x,RealDa$y,method='basis',max_selection=9,
# normalize='norm',lasso=TRUE)

## Check the stopping point with CD
plot(2:length(out$alpha),out$CD) # plot the CD with the iteration number
## The value drops to very small compare to others at iteration six and
### stays low after that, so the algorithm may stop there.

flars_TrainTest Internal function for doing simulation using functional lars.

Description

This is a function built for doing data generation and variable selection using functional lars with
different settings and data with different correlation structures.

Usage

flars_TrainTest(seed=1,nsamples=120,nTrain=80,var_type=c('f','m'),
VarThreshold0=0.1,SignThreshold0=0.8,cor_type=1:5,
lasso=TRUE, check = 1,uncorr=T,nVar=8,Discrete_Norm_ID=1:12,
NoRaw_max=12,raw_max=9,hyper=NULL,RealX=NULL,RealY=NULL,
dataL=NULL,nCor=0,control=list())

Arguments

seed Set the seed for random numbers.

nsamples Sample size of the data to generate.

nTrain Sample size of the training data.

var_type Two choices of the variable types. See details for more information.

cor_type Correlation structures. See details for more information.

VarThreshold0 Threshold for removing variables based on variation explained. See flars for
more details.
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SignThreshold0 Same as VarThreshold0

lasso Use lasso modification or not. In other words, can variables selected in the
former iterations be removed in the later iterations.

check Type of lasso check. 1 means variance check, 2 means sign check. check=1 is
much better than the other one.

uncorr If the variables are uncorrelated or not. See details for more information.

nVar Number of variables to generate.
Discrete_Norm_ID

Which discrete method and which norm to use. 1 to 12.

NoRaw_max Number of variables to select when not using RDP discretising method.

raw_max Number of variables to select when using RDP discretising method.

hyper Hyper parameters used in the Gaussian process. GP is used for building the
covariance structure of the functional variables.

RealX Real data input X.

RealY Real data input Y.

dataL Real input data list rather than generate in the function. It should has the same
structure as that generated.

nCor Number of cores to use.

control List of control items. See fccaGen for more details.

Value

A list of results using different normalization methods and different representation methods for the
functional coefficients.

predict.flars Prediction for functional least angle regression.

Description

This is the function that carries out the prediction of the new observations.

Usage

## S3 method for class 'flars'
predict(object,newdata,...)

Arguments

object This must be a flars object from the function flars.

newdata A list of new observations. The format of this set of data must be the same as
the training data, including the order of the variables.

... Other arguments to input.
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Value

A matrix of predictions. Since the input flars object may have more than one estimated coef-
ficients, the number of predictions may be more than one set. Each column of the outcome is
corresponding to one set of coefficients.

Examples

library(flars)
library(fda)
## Generate some data.
dataL=data_generation(seed = 1,uncorr = TRUE,nVar = 8,nsamples = 120,

var_type = 'm',cor_type = 3)

## Split the training data and the testing data
nTrain=80
nsamples=120

TrainIdx=seq(nTrain)
TestIdx=seq(nsamples)[-TrainIdx]
fsmTrain=lapply(dataL$x,function(fsmI) fsmI[TrainIdx,,drop=FALSE])
fsmTest=lapply(dataL$x,function(fsmI) fsmI[TestIdx,,drop=FALSE])
yTrain=dataL$y[TrainIdx]
yTest=dataL$y[TestIdx]

## Do the variable selection
out=flars(fsmTrain,yTrain,method='basis',max_selection=9,

normalize='norm',lasso=FALSE)

## Do the prediction
pred=predict(out,newdata = fsmTest)

# apply(pred,2,flars:::rmse,yTest)

RealDa A subset of real data from Limbs Alive project.

Description

A subset of scalar response variable, functional variables and scalar variables.

Usage

RealDa

Format

A list with one response and one list of covariates. The covariates contains 15 functional variables
and 11 scalar variables. Each element of the covariates is a matrix.
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Details

The data set is from Limbs Alive project. The functional variables are trajectories from patients
movements. The scalar variables are summary statistics of some more complex movements and
time from stroke to the recording time. Patients’ indices are not included in the date set.
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